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Section 1

Introduction

This is the final technical report for project DACA76-89-C-0023, an Advanced Re-
search Projects Agency (ARPA) contract to BoozeAllen & Hamilton (BAH) titled
“An Image Understanding Environment for ARPA Supported Research and Applica-
tions.” The contract was originally let to Advanced Decision Systems (ADS) which
was subsequently purchased by BAH.

The project began as a team effort by BAH and the Georgia Institute of Technology
(GT) to design a Vision Environment system and develop a prototype in C++ for
UNIX workstations. Initial designs and a prototype were developed in the first year
of the contract. Plans were also made for significant improvements to the prototype.
However, at the beginning of year two, it became clear that the effort would achieve
the greatest benefit to ARPA if design activities were oriented toward collaboration
on the emerging ARPA Image Understanding Environment (IUE) design. The IUE
design was to be a joint effort by a large segment of the ARPA Image Understanding
(IU) community. To enhance the eventual impact of the IUE system, the Vision
Environments design effort was consolidated into the IUE design effort. Like the
Vision Environment system, the ARPA IUE is intended to facilitate the transfer of
technology from the ARPA IU community into industrial, military, and commercial
applications.

The focus of activity since the first year has been helping to design the ARPA
sponsored IUE. BAH added additional subcontractors and a consultant to provide
expertise in areas important to the wider scope of the IUE design. The additional sub-
contractors (with principal investigators) were Stanford University (Professor Thomas
O. Binford) and SRI International (Dr. Thomas Strat). The consultant was Dr.
Joseph Mundy from General Electric Corporate Research and Development.

The IUE design significantly advances the state-of-the-art in environments and
development frameworks. Key advancements are capabilities to seamlessly integrate
the numerous concepts of IU into one system, to easily introduce new users to the
system, and to extend the system in multiple new directions. Our work has focused




on providing these capabilities with a class hierarchy clearly embodying IU concepts
and a user interface allowing complex interactions to be simply expressed.

The IUE was designed primarily by a group of ten ARPA IU community represen-

tatives from industry and academia. The design group consisted of:

Joe Mundy (Chair) - GE
Thomas Binford - Stanford

Terry Boult - Columbia

Al Hanson -~ U Mass

Bob Haralick - U of Washington
Charlie Kohl - AAI

Daryl Lawton - Georgia Tech
Douglas Morgan - BAH

Keith Price - USC

Tom Strat - SRIL

The design efforts by Joe Mundy and representatives from BAH, GT, Stanford, and
SRI have been either partially or completely funded through this contract. Prior to
the formation of the design group, several meetings (open to the ARPA IU commu-
nity) were held to refine the IUE goals and development strategy. During this period,
the Vision Environments design and prototyping experience was critical to focusing
the IUE design on specification of a comprehensive class hierarchy.

This document describes the results obtained under this contract. Activities and
results during the first two years are covered in annual technical reports included as
appendices. The period from September 26, 1991 to July 25, 1993 is described in
the body of the report. The focus during this period was analysis and exploration of
design concepts developed by the IUE design committee.

The activities performed during this last period included
o Attending and presenting at IUE design committee meetings, including a pre-

sentation of the IUE at INRIA, France that firmly established European interest
in the IUE (All).

e Updating the IUE design documents and contributing to IUE overview papers
(AlD).

o Prototyping designs and providing example IUE application code examples

(All).

o Analyzing efficiency and usability issues involved with multiple virtual inheri-

tance in C++ (BAH).

e Suggesting subtyping hierarchies for the IUE that conform to the constraints of
class derivation (inheritance) in C++ (BAH).

2




e Being the IUE committee liaison with the ARPA /Texas Instruments Open Ob-
ject Oriented Database project (BAH).

e Prototyping base classes in CLOS (BAH).

e Improving definitions of base classes and proposing that Manifold classes aug-

ment or replace IUE Spatial-Object classes (BAH).

o Participating in defining the Lisp/C++ interface requirements of IUE and com-
municating those requirements to Lucid, Inc., the Lisp/C++ IUE interface
ARPA contractor (BAH/SRI).

® Defining IUE user interface capabilities and helping design Spatial-Object classes
(GT).

o Helping specify Image-Feature classes (Stanford).

o Chairing the IUE design committee (Mundy).

o Helping define and test IUE data exchange facilities (Mundy).
o Organizing IUE meetings and committee activities (Mundy).

¢ Specifying coordinate transforms and coordinate systems (SRI).

This effort resulted in and contributed to, multiple documents for general distribu-
tion. These include the IUE Overview (the “Little Blue Monster”), the IUE Class
Definitions (the “Big Green Monster”), the IUE Data Exchange Manual, several
ARPA image understanding workshop papers, and papers for IEEE Computer Vision
and Pattern Recognition workshops. The IUE overview, design, and data exchange
documents are now maintained by Amerinex Artificial Intelligence, Inc. (AAI) as part
of the IUE integration contract from ARPA. The latest versions of these documents
(as well as several proceedings papers) may currently be obtained over the Internet

from http://www.aai.com/AAI/TUE/IUE.html.

This document describes the additional analysis and prototyping that BAH per-
formed. Section 2 presents results of an analysis of multiple virtual inheritance in
C++. Section 3 discusses how the IUE inheritance hierarchy might be reorganized
to do without “dynamic attributes.” Section 4 presents some of the recommenda-
tions presented to the TI Open Object Oriented Database effort. Section 5 describes
the base classes prototyped in CLOS. Section 6 presents a design for mathematics-
oriented classes. Parts of this design have helped improve the definitions of specific
IUE classes, though the entire design has not been adopted by the IUE. Appendices
contain the annual technical reports of years one and two of the contract.




Section 2

Analysis of Multiple Inheritance in C++

This section summarizes results of experiments investigating the effects of multiple
virtual inheritance on object execution speed and storage size. Experiments were
performed using the compilers: g++ 1.39.1, g++ 2.0, and CC 2.1. Lucid Common
Lisp (which only has the equivalent of virtual bases) was also used for comparison
with non-C++ inheritance techniques. The experiments set up complex inheritance
hierarchies and measured instance size, creation and destruction time, slot access
time, and virtual function (method) call time.

A typical test was to create an inheritance hierarchy such as in Figure 2-1. All
timings were normalized to the speed of a 25MHz SPARCstation 14+. Measurements
were done with and without the “-O” optimization compilation flag. The time used
in calling the various virtual functions ma through md from classes a, bl, ..., gl, c5,
.oy 8D, d15, g15, and h were computed. If all calls are made on a variable declared to
be of class a, then timings are as follows:

gt+: All calls take 1.04 usec
g++ -0: All calls take 0.68 usec
g++-2.0: All calls take 1.24 usec
g++-2.0 -0: All calls take 0.56 usec
CC2.1: All calls take 1.27 usec
CcC2.1 -0: All calls take 0.60 usec



o tom————— e e et o m—— +
I I | I I I
b1l cl di el f1 gl
I | I I I I
I c2 d2 | f2 g2
I I I | I I
| c5 ds | £5 g5
I I I I I |
I I d14-+ | I gla--+
[ I I I I I
I I | 415 | I I gl15
I I I | I I
tom————— o Rt e o ——— +

I

h

Classes have no data members. All functions are empty.

Define empty virtual functions: ma, mb, mc, md in class a
Override virtual function for mb in class bi

Override virtual function for mc in classes mc<i> , i=1,...,5
Override virtual function for md in classes md<i> , i=1,...,15
Override all virtual functions in h

Figure 2-1: Example inheritance hierarchy



If all calls are made on a variable declared to be of class d10, then timings are as
follows:

gH+: All calls take 3.41 usec
g++ -0: All calls take 1.93 usec
g++-2.0: All calls take 3.61 usec
g+t+-2.0 -0: All calls take 1.85 usec
CC2.1:

TIME (USEC) TO CALL VIRTUAL FUNCTION ON OBJECT OF CLASS

VIRTUAL FUNCTION

C ma mb mc md

L Lt et

A di0 | 1.71 1.70 1.87 1.27

S dis5 | 1.70 1.71 1.70 1.26

S h | 1.70 1.86 1.86 1.26
CC2.1 -0:

TIME (USEC) TO CALL VIRTUAL FUNCTION ON OBJECT OF CLASS

VIRTUAL FUNCTION

C ma wmb mc md

L et
A 410 | 1.25 1.27 1.26 0.61
S di5 | 1.251.27 1.27 0.61
S h | 1.25 1.26 1.27 0.61

Object creation and destruction times vary widely with position of the class of
interest within the inheritance hierarchy and with allocation on the stack or on the
heap (using the C++ operators new and delete). The timings are:

Operation g+ g+t g++2.0 g++2.0 CC2.1 CC
-0 -0 -0
10 a’s on/off stack: 2.8 2.8 2.8 2.7 5.7 0.8
new/delete 10 a’s: 76.1 69.4 219.9 208.5 263.7 230.5
10 d15’s on/off stack: 452.4 404.3 49.4 45.8 2161.7 1413.9
new/delete 10 di15’s: 541.0 483.1 273.0 251.8 2882.5 1836.0
10 h’s on/off stack: 1078.9 916.4 144.4 135.6 4313.2 2522.9
new/delete 10 h’s: 1442 .5 996.7 370.4 343.6 5110.4 3593.1
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The sizes of instances shows a critically important feature of these C++ implemen-
tations. C++ object system overhead causes instances to grow large with number of
virtual base classes. Measurements show such significant size increase that the IUE
cannot reasonably make virtual derivation the environment standard. Size measure-
ments were made for selected classes in three situations: the size of an object in an
array (given by the result of sizeof applied to the class name), the size of an object
allocated on the data stack (given by subtracting the addresses of consecutive objects
on the stack), and the size of object allocated on the object heap (given by applying
sizeof to an object allocated using new). The sizes (in bytes) are:

instance g++ CC2.1
a in an array 4 4
a on stack 8 4
a on heap 16 16
d15 in an array 64 544
d15 on stack 64 544
d15 on heap 72 552
h in an array 188 1240
h on stack 192 1240
h on heap 200 1248

The following observations were related to the IUE design committee:

o The constructor/destructor calls can slow down by a factor of over a thousand
with heavy use of virtual base classes.

e Object size increases dramatically with the number of virtual base classes. The
increase is compiler dependent (and might be eliminated by some compiler).
An indication of the virtual inheritance size overhead for g++ and CC is given

by:

o g++ overhead = 4 X (number of “virtual” that appear in the class and base
class declarations) + (number of base classes that are virtual and add new
virtual functions or are not virtual and add the very first virtual function to
objects of the base class)

o (At least quadratic in the number of indirect virtual bases) + 4 x (number
of base classes that are not virtual and add the very first virtual function to
objects of the base class)

In contrast to these linear and quadratic space overheads, Lucid Common Lisp
has a 24 byte overhead for any CLOS object.
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e There is an incremental increase in member data access time for each level of
virtual inheritance between the class of variable declaration and class in which
the member data is declared. The increment, for all compilers and optimization
settings is about 0.12 usec.

e The presence of virtual base slows method dispatch. Our hierarchies showed
worst case slow down by a factor of six (0.6 usec to 3.6 usec).

e Virtual base classes complicate the use of classes in C++. There is no simple
way to pass constructor arguments to base classes, to downcast, or to traverse
all base classes with a fixed operation.

The primary conclusion relevant to IUE design is that for efficiency, the use of
tangled inheritance with virtual base classes should be significantly restricted in the

IUE.

With Lucid Common Lisp (CLOS) all instances were 24 bytes larger than the
number of bytes needed to store the user data. Thus, other than a fixed offset, the
increase in instance size with structure of the inheritance hierarchy does not occur.
However, with CLOS there is an across-the-board slow down of approximately a factor
of 10 with respect to C++. Thus, CLOS can be more storage efficient for large and
tangled inheritance hierarchies, but is significantly slower. Also, C++ can be more
storage efficient for small or untangled inheritance hierarchies.

We made the following recommendations for structuring the IUE hierarchy (which
have helped structure subsequent developments of the C++ IUE):

e Avoid virtual base classes in subclass of IUE-Object. This makes in-
stances that are small, that are constructed and destroyed quickly, and execute
methods quickly. Further, C++ becomes easier to use: there is a simple way to
traverse all base classes, simple down-casting works, and constructor argument
passing is simplified. Virtual base classes may still be used for non-IUE-Object
superclasses of [UE-Objects. The structural requirement is that the subgraph
of subclasses of IUE-Object needs to be a tree. Following this recommendation
eliminates some logically correct and useful hierarchies, however the impact
on most IU applications will likely be small. Further investigations should be
carried out on this structuring issue.

o Use classes that do not inherit from IUE-Object (i.e., mix-in classes).
Rather than inheriting from IUE-Object, each mix-in class would define its own
methods for interacting with the down-casting and recursive equal, I/O, copy,
etc. Other classes can be derived from mix-ins through non-virtual (multiple)
inheritance. These classes would then have the general capabilities of the TUE-
Object without the overhead multiple virtual inheritance. In general, mix-in
classes should not have directed instances (they should be abstract classes).

8




Section 3

Subtyping for Efficient use of C+4+

The IUE design defines a set of base class capabilities called dynamic attributes.
Dynamic attributes are intended to simplify common IU programming tasks and
simplify development of the IUE. They are also significant extensions to the C++
language and require extensive support from automatic code generation facilities.
We give an overview of the capabilities of dynamic attributes and suggest alternative
approaches.

Dynamic attributes have the following goals:

o Implement lists of arbitrary properties for objects, with default values and
choices of speed/memory tradeoffs.

e Inherit property value defaults (or find defaults with multi-object keys).

e Transparently implement attributes with slots (member data), with hashtables
(no per instance memory for unused attributes), or with function calls.

o Allow getting and setting attribute values and specification of attribute imple-
mentation.

The discussion of dynamic attributes in the IUE design document states the fol-
lowing:

o Object-oriented development inevitably leads to the desire to suppress super-
class slots and access methods. ‘

e Since suppression of slots and methods is not allowed in object-oriented pro-
gramming languages, the IUE must address the issue by extending the C++
(and CLOS) object systems.

The dynamic attribute system was originally developed so that “soft” slots (func-
tioning somewhat like C++ member data) could be implemented by global-scope
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hashtables that take up no space on an individual object. Subclasses would then
be free to ignore the slots with no per-instance storage cost. Also, subclasses would
be able to redeclare a slot as having inside-the-instance storage (normal C++ data
members or “hard” slots) or as having an arbitrary function called upon slot read
and write. Further, an extensive initialization procedure was established for supply-
ing default slot values through search across inheritance graphs and across leading
subsequences of a sequence of objects.

We believe that the rationale for the necessity of suppressing slots and methods is
based on a flawed premise: that a pure mathematical type is correctly modeled by a
class that defines storage slots. Instead, a class that defines slots is always specifying
a particular implementation of an abstract or mathematical type, not the abstract
type itself. The design document motivates the need for dynamic attributes with
a discussion of two particular Circle and Ellipse classes. The discussion improperly
identifies the general concept of a mathematical ellipse with a particular class imple-
mented with two slots for the foci. There is then a clear problem with Circle inheriting
from Ellipse, since a Circle needs only a center not two foci. Dynamic attributes are
then used to solve this problem by allowing the user to ignore the unneeded slots in
a Circle subclass with no wasted space in an instance. The Ellipse class with soft
slots would execute methods significantly more slowly due to the hashtable lookup.
The new problem with this solution is probably just as great as the problem being
solved, but is largely ignored in the motivation. Both problems arise from the initial
incorrect modeling step of representing a mathematical ellipse (and, therefore, all its
restrict versions) with a class with two specific storage slots.

An alternative approach to Circle/Ellipse problem is to define abstract classes with-
out slots to specify the mathematical properties of objects. Then, concrete classes
(classes actually having slots and capable of having usable instances) are defined as
subclasses. In this approach, both Circle and Ellipse implementations could inherit
from the abstract Ellipse, but the Circle implementation would never directly inherit
from the Ellipse implementation with two slots for foci. Figure 3-1 shows one way
to organize part of the class hierarchy. The “Acc” classes represent abstract mathe-
matical definitions of Circle and Ellipse. The “Mut” classes represent classes defining
the mutator methods that change the slot values of an instance. Circlel and Ellipsel
represent two (of many possible) classes that can have instances of mutable circles
and ellipses. The critical observation is that Circlel inherits from EllipseAcc, but not
from Ellipsel or from EllipseMut. Therefore, Circlel inherits all the behavior of an
ellipse and nothing extra. Even simpler hierarchies can be constructed if mutation
operations are allowed to “fail” when they do not make sense in subclasses. This
allows the separate accessor and mutator classes to be merged.

Solutions that use the built-in capabilities of C++ are likely to result in smaller and
faster executables. The run-time support for dynamic attributes will likely be quite
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Figure 3-1: Hierarchy modification to handle Circles and Ellipses




complex, making for larger, slower executables and longer compile times. Alternate
ways of achieving the aims of dynamic attributes include:

Separate abstract classes for accessors (read-only) and mutators. Allows “more
specialized” objects to have fewer hard slots.

Develop an explicit class for “soft” slots. Do not attempt to “hide” the im-
plementation of a soft slot from the user, make the user call explicit soft slot
methods to store and retrieve data.

If the initialization strategy of the IUE-context remains a desirable feature, con-
sider implementing it with an IUE-Function with a domain of object sequences.
A tree of overriding unions and insertions could approximate IUE-context in-
heritance and dynamic attribute “copy-on-write.”

Dynamic attributes can store and find values keyed on any leading subsequence
of a sequence of objects. Support for this can likely be dropped without affecting
users.

Implement property list objects and make them explicitly available to the user.
Do not try to make property lists always look like a regular C++ data member
(“hard” slot).

The current IUE design has many places were a developer currently might find
he wants to suppress inherited slots and methods. The approach used for the Cir-
cle/Ellipse problem can be used to restructure these problem areas so that suppression
1s not needed. Two examples are:

The Spatial-Object class defines a bounding-prism slot; however, it may be
highly desirable for some subclasses, such as Point, to not waste space on that
slot. The solution, without leaving standard C++, is to remove the bounding-
prism slot from Spatial-Object and only include the slot in subclasses where it
is indeed used. A method that returns a bounding-prism can be included in the
basic Spatial-Object.

Ordered-Pointset defines a pts slot for a sequence; however, many subclasses
may not need a sequence (e.g., an interval might be best defined by formulas
rather than an explicit sequence). A new sequence might be better generated
whenever needed.

Inheritance structures could eliminate the primary problem addressed by dynamic
attributes without going beyond the capabilities of standard C++. A combination
of disciplined design and development of useful classes that the user can use in stan-
dard C++4 ways should go far in eliminating any need for the dynamic attribute
mechanism. '
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Section 4

Liaison to the Open Object Oriented Database
Project

BAH acted as the liaison between the ARPA /Texas Instruments Open Object Ori-
ented Database (Open OODB) project activities and the [UE design committee. BAH
personnel attended Open OODB design workshops and reviewed Open OODB docu-
mentation for the IUE. This section describes a statement of IUE needs transmitted

from BAH to the Open OODB design workshop.

The IUE will be selecting an OODB for integration into many system develop-
ments. Rather than developing an OODB, we prefer to use OODB standards and
their commercial implementations. For the IUE, development would have high cost,
high technical risk, and low likelihood of widespread acceptance. Unfortunately, cur-
rent OODBs meet few of the IUE functional and structural requirements. These re-
quirements include C4++ and Lisp compatibility, an underlying OO data model, and
ability to customize the database for efficient storage and retrieval into any underlying
storage medium, including a Relational Database Management System (RDBMS).

The ARPA/TI Open OODB development looks promising. The strawman Open
OODB addresses concerns similar to those of the IUE, and the collaborative design
process allows the IUE to contribute to requirements definition, design, and implemen-
tation. Further, the active participation of many organizations will greatly enhance
general acceptance of the Open OODB standards and implementations.

The next section reviews requirements on an OODB to support IU. The section fol-
lowing that discusses the need and suggested approach for abstract class specifications

for an OODB.

4.1 Requirements for Image Understanding

IU stresses Object Oriented (OO) concepts and implementations. U uses models
of the real world to generate and evaluate hypotheses that match model to sensor-
obtained data. Objects are created by feature extraction and by complex reasoning
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processes involving numerous other objects. One IU operation can easily generate
tens of Mbytes of intermediate and result objects. IU classes are varied, including:

e Hierarchical spatial objects with many attributes

e Networks (adjacency, Bayesian, relational, coordinate systems)

o User interface objects

e Images

e Primitive and composite extracted features (edges, curves, regions, etc.)

o Hypotheses.

Efficiency is an overriding concern with [U systems. Potential efficiency problems

that an OODB must address include:

e Objects with volumes of redundant data cached for computational efficiency

o Large quantities of objects (typically “small”) that are used for their value only

and are not shared by other objects.

An object can reference volumes of redundant data. For example, a cylinder object
defined by six real numbers might reference 1,000 approximating triangular facets.
If other objects do not rely on maintaining identity of facets, the facets need not be
stored. Facets can generally be recomputed much faster than they can be moved to
and from disks (especially as persistent objects). Further, storing the facets wastes
disk space. An OODB for IU must provide hooks (in the form of generic or virtual
functions) for controlling the transformation of objects to and from equivalent storage
forms.

IU generates many objects, especially small built-in primitives, such as cons cells
or structs. If an object’s identity is to be shared among multiple objects (either for
equality testing or shared interface), that object has to be made persistent. However,
applications often specifically disallow sharing of certain objects and these can then
be stored by value. This allows for immense savings in symbol table size and access
time, I/O translation (formatting) time, and disk storage. An OODB for IU must
provide hooks for specifying which objects have to be persistent and which can be
stored by “value.”

IU uses network maintenance or view access/update capabilities. This involves
objects defined by operations on other objects in which the semantics call for the
values of all related objects to change together. For efficiency, IU applications cache
dependent value information. Then, changes in underlying object values must result
cache update or notification of cache invalidation. These capabilities are often used
in networks and in user interface views. Read-only views have been sufficient for all
but the user interface portions of our IU applications.

Because IU systems generate many objects connected in many different ways, an
OODB should support object removal, garbage collection, and integrity checks.

Since IU is a rapidly changing research area with ongoing research on object repre-
sentations, an OODB should support updating class definitions (schema evolution).
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An OODB for IU (particularly for Test and Evaluation) should be powerful enough
to implement an RDBMS. This should be done as an integrated collection of classes
for domain, attribute, tuple, table, dependency, constraint, index, database, etc. To
capture the semantics of an RDBMS, the system must support storage of object
identity (e.g., for databases, tables, and attributes) and object value without identity
(e.g., for tuples).

An OODB for IU must support efficient disk I/O for large contiguous-memory data
objects such as image arrays.

4.2 Class Specification for an OODB

A primary requirement for an OODB is that the semantics of all objects be unaf-
fected by storage actions of the OODB. For example, an object must mean the same
thing before and after a commit. Since an efficient OODB can change object repre-
sentation, ignore redundant data, and even ignore object identity, miscommunication
between the OODB translator and the class design can result in the OODB cutting
too many corners and fouling the class design. Conversely, cutting too few corners
can devastate efficiency.

We suggest that a consistent OODB requires an abstract specification of the seman-
tics of the object classes (i.e., a “data model” per class expressed in a specification
language). A class specification implies just what procedural accesses and OODB
translation short cuts are allowed. If data is to be shared between different ap-
plications, perhaps in different languages, it is necessary that the specification be
independent of programming language: neither C++ nor CLOS can be “the data
model.” It is not necessary that specification be automatically transformed into code
or storage translators.

Specification is a foundation of RDBMSs and a primary reason for their widespread
use. The relational data model is expressive enough for many applications and there
is no doubt about the meaning of the database before and after an RDBMS operation.

OO classes need similar specifications to support safe and efficient OODBs. Al-
though the theory of specification is well developed for systems without inheritance,
there is not yet general agreement on how to write OO class specifications. We pro-
pose that the approach of viewing a relational table as a time-varying object that
at any moment refers to an algebraically well-defined abstract relation extends to
more general classes. That is, an OO class defines time-varying objects that refer to
algebraically defined abstract objects. Further, inheritance allows new classes to be
developed that modify either the underlying algebra, the mapping from OO objects
to abstract objects, or the implementing code.

The programming language Eiffel follows a similar, but less formal, approach using
preconditions, postconditions, and class and representation invariants. The combi-
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nation of CLU and Larch provide similar facilities, but without inheritance. C++
and CLOS enforce virtually no semantic constraints on their inheritance hierarchies.
This makes them inherently dangerous in OODB environments and increases the
importance of clear, external specifications.

The 1ssues that should be addressed with specifications include:

Specification of an Abstract Data Type (ADT) (i.e., immutable abstract objects

with sorts, operations, operation interfaces/templates, and axioms)
Specification of a class (in terms of function-varying links to ADTs)

o Specification of functions specializing on multiple arguments
o Distinct things inheritance augments (ADT axioms, ADT interface and axioms,

class implementation, class interface, and class axioms)

Object identity as an ADT

Mutable and immutable objects

Hidden interfaces, object sharing, views, and truth maintenance
Context dependent definitions of equal?, mutable?, copy, read, and write
Efficient and consistent multiple representations.
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Section 5

Prototyping of Base Class in CLOS

BAH prototyped a set of base classes in CommonLISP. The classes included iue-
object, set, finite-set, boolean, ident-set, ident-hash-set, relation, and iue-function.
The implementation brought to light several problems with the original definitions
of base classes. Solutions were developed and incorporated in the implementation.
These included:

) Makihg both object-mutating and new-instance-creating versions of functions
(appended “-NEW” for new-instance-creating versions).

e Adding a function that would map other functions over IUE-sets.

e Adding Generic make-<class-name> construction methods (e.g., MAKE-IDENT-
HASH-SET).

e Adding subclasses of iue-set: finite-set, ident-set, ident-hash-set
e Adding a boolean class.

e Resolving name conflicts with CommonLISP. Conflicting names included AND,
DESCRIBE, GET, INSPECT, INTERSECTION, MAP, MAPC, REMOVE,
SELECT, NOT, OR, UNION, WRITE, and XOR. The conflict was resolved by

appended “G” (for Generic) to iue versions.

e Grouping export’s, defclass’s, defgeneric’s, defmethod’s.

o Files named “<class-name>-def.lisp” contain one defclass, new defgenerics
for the class, plus new exports

o Files named “<class-name>.lisp” file would contained new defmethods.

o Further effort should be taken to segregate and order the loading of: exports,
imports, macros, metaclasses, classes, methods, defgenerics, and globals.

Table 5-1 lists the classes and the methods which were implemented in CLOS.
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Table 5-1: Classes and methods prototyped in CLOS

class methods
boolean DEEP-COPY
SHALLOW-COPY
DEEPEN-SHALLOW-COPY
COPY
COPY-LIKE
IS-EQUAL
IS-UNIQUE
IS-IMMUTABLE
CHANGE-TO-IMMUTABLE
IS-LOCKED
SET-LOCK
NOT-IUE
AND-IUE
XOR-IUE
OR-IUE
FINITE-SET | IS-EQUAL
IS-FINITE
IS-COUNTABLE
IS-COUNTABLY-INFINITE
IS-UNCOUNTABLE
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Table 5-1 (Continued): Classes and methods prototyped in CLOS.

class

methods

IDENT-HASH-SET

MAKE-INSTANCE-2
MAKE-IDENT-HASH-SET
MAKE-INSTANCE-2
MAKE-IDENT-HASH-SET
MAKE-INSTANCE-2
MAKE-IDENT-HASH-SET
MAKE-INSTANCE-2
MAKE-IDENT-HASH-SET
COPY

COPY-LIKE

CARD

IN

DISJOINT

IS-SUBSET

INSERT

REMOVE-IUE
UNION-NEW

UNION-IUE
DIFFERENCE-NEW
DIFFERENCE
INTERSECTION-NEW
INTERSECTION-IUE
SYMMETRIC-DIFFERENCE-NEW
SYMMETRIC-DIFFERENCE
MAPC-IUE

MAPC-IUE




Table 5-1 (Continued): Classes and methods prototyped in CLOS.

class methods
IDENT-SET EQUIVALENT-ARGS
UNION-COMPATIBLE
INSERT-COMPATIBLE
IS-SINGLETON
IS-EMPTY
IUE-CLASS IN
MAKE-INSTANCE-2

TUE FUNCTION
TUE-OBJECT | IS-SAME

IS-VALID

SET-VALID

IS-KIND-OF

OF-CLASS

OF-SUBCLASS

IS-UNIQUE
IS-IMMUTABLE
CHANGE-TO-IMMUTABLE

IS-LOCKED
SET-LOCK
DESTROY
RELATION
SET
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Section 6

Mathematics-Oriented Base Class Designs

BAH refined the mathematical foundation for base class designs beyond what has
been agreed upon for inclusion in the IUE Class Definition and IUE Overview docu-
ments. This section presents an overview of the designs for Sets, Relations, Functions,
probability-related classes, and Manifolds (possible replacements for Spatial-Objects).

The Set classes were refined with goals of removing circular definitions involved in
previous versions and of making all methods on a Set or Set subclass depend strictly
on information derivable from just the elements of the set. Achieving this latter goal
ensures that Sets do not depend on non-set-like associated data or slots. The intent
is to define Set and its subclasses so that all the important auxiliary sets (such as
range of a function) could, in principle, be derived from the primary object’s state,
or set of values. For instance, the exact range of a function can be extracted from a
function by repeatedly evaluating the function. This property makes it unnecessary
to augment the natural state of a set-related object by defining slots to hold auxiliary
information. An implementation could still define such slots to improve efficiency,
but the slot would hold essentially redundant information.

Probabilistic quantities and Bayesian network classes were defined. The defined
classes include random variables, conditional distributions, conditional densities, and
Bayesian networks. The current IUE design document does not include definitions
for these objects. The definitions given here give the programmer a simple interface
for stating most interesting operations on Bayesian networks.

The manifold class generalizes spatial objects by representing any continuously pa-
rameterizable set. The definition includes definitions of coordinate systems, sets of
compatible coordinate systems, and linearized versions of both spaces and transfor-
mations.




6.1 Sets, Functions, and Relations

This section describes the IUE objects derived from elementary set and relation
theory. The objects described include: set, function, scheme, tuple, relation, and
Cartesian product. Later sections describe objects closer to the domain of IU and
probabilistic inference.

High-level inspection operations that yield true or false and take any type of object
as arguments include:

o Equality test: Is-Equal(-,).

o Type tests: Is-Set(-), Is-Function(-), Is-Scheme(-), Is-Tuple(-),
Is-Ordered-Pair(-), Is-Relation(-), Is-Cartesian-Product(-),
Is-Random-Variable(-), Is-Conditional-Distribution(-),
Is-Discrete-Conditional- Distribution(-), Is-Gaussian-Distribution(-),
Is-Linear-Gaussian-Conditional - Distribution(-),
Is-Multi-modal-Linear-Gaussian-Conditional- Distribution(-),

Is-Manifold(-), Is-Chart(-), etc.

A set represents an unordered collection of distinct elements. Common denota-
tions for a set are {z | ¢(z) } and { f(z) | ¢(z)} for a predicate ¢ and function f.
Operations taking sets as arguments include:

e Boolean combinations: Union(A, B), Intersect(A, B), Difference(A, B),
Symmetric-Difference(A, B) (i.e., U, N, \, and A).

e Union and intersect on sets of sets: Union-Set(.A) and Intersect-Set(A) (i.e.,

J 4 and ] A).

AcA AcA

o Subset test: Is-Subset(A, B), returning true if A C B.

o Intersection test: Is-Disjoint(A, B), returning true if AN B = .
o Membership test: In(A4,z) (ie., “Is x € A?").

e Cardinality: Card(A) = |A|.

e Cardinality tests: Is-Singleton(A), Is-Empty(A), Is-Finite(A), Is-Countable( A),
Is-Countably-Infinite(A), Is-Uncountable(A).

o Subset selection: Select(A, Boolean-Test(-)) = { a | a € A and Boolean-Test(a) =
true }).

o Empty set: Empty-Set() = the empty set = §).
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e Power set: Power-Set(A) = P(A), the set of all subsets of A.

e Identity function: Identity-Function(A) yields the function (function is defined

below) f: A — A satisfying f(a) = a for all a € A.

o Constant function: Constant-Function(A,b) yields the function f: A — {b}
satisfying f(a) = b for all a € A.

e Set-to-Relation: Set-To-Relation(A,z) = z:A = {(z,a) | a € A}. This
operation maps a set A and object z into a relation. If R is the resulting
relation, it has z as its only attribute and it satisfies Relation-Dom(R,z) = A.
See below for definitions of relation, attribute, and Relation-Dom.

o Operations to create all functions from A to B, all 1-1 functions, all onto func-
tions, and all invertible functions.

o Choose: Choose(A) = an arbitrary element of A.

Uses of sets include: sets of site objects, sets of images, sets of features, sets of
random variables, sets of conditional distributions, range and domain sets of functions,
and sets of tuples in relations, sample spaces, and functions.

A function represents a functional (i.e., many-to-one) mapping from a domain set
to a range set. A function establishes a pairing that maps each element of its domain
to exactly one element of its range. The notation f: A — B is equivalent to the
three conditions that f is a function, A is the exact domain of definition of f, and B
contains the exact range of f. Such an f is also said to be a B-valued function on
A. Further, A — B denotes the set of all functions mapping A to B. If f:A — B
and a € A, then the unique element of B associated with a is written as f(a) or fa.

Note, we will use a centered dot (e.g., f - ¢) for multiplications having a function on
the left.

Every function is uniquely associated with the set of ordered pairs (ordered pairs
are defined below) called its graph:

f e {(a, f(a)) ]| aisin the domain of f}.

The graph is a type of relation (relation is defined below as a type of set with tuple
elements). It is convenient to elevate the status of this particular association between
graph and function and say that a function “is” its graph. This identification of
function with relation eliminates explicit conversions between function and associated
relation and allows operations defined for relations (or sets) to apply directly to
functions. To avoid circular definitions, the definition of relation given below depends
on the concepts of domain, range, and mapping property of functions, but not on
modeling a function as a graph, relation, or set.

Operations taking functions (with f: A — B and g:C — D representing general
functions) as arguments include:
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Fvaluate(f,a) = f(a) = fa = the unique element of B associated with a € A.

Evaluate-Set(f,C') = image of set C C A under f = { f(a) | a € C} where
C C A. With sufficient context, this operation may also be written as f(C).

Point-Set-Invert(f) = the function mapping elements of Ran(f) into inverse
images (subsets of A) = h such that h: Ran(f) — Power-Set(A) and a € h(b)
if and only if f(a) =b.

Set-Set-Invert(f) = the function mapping subsets of Ran(f) into inverse images
(subsets of A) = h such that h: Power-Set(Ran(f)) — Power-Set(A) and a €
h(C) if and only if f(a) € C' and C C Ran(f).

Compose(g,f) = g o f = function with domain AN f~1(B N C) that evaluates
to g(f(a)) for all a in the domain.

Dom(f) = A = the (exact) domain of f = Evaluate-Set(First,f). First(-) is a

function on ordered pairs and is defined below.

Ran(f) = the (exact) range of f = {b|a € Dom(f) and f(a) = b}
= PEvaluate-Set(f, Dom(f)) = FEwvaluate-Set(Second, f). B always contains
Ran(f). Second(-) is a function on ordered pairs and is defined below.

Domain(f) = some superset of Dom(f).
Range(f) = Ran(f) = some set containing Ran(f) (usually B).

Restrict(f, D) = restriction of f to the domain AND = h: (AN D) — B such
that A(d) = f(d) for d € AND = Select(f,e) where e((z,y)) is trueif z € AND.

Overriding-Union(f,g) = f U Restrict(g, Dom(g)\Dom(f)).

Tests for function type: Is-1-To-1, Is-Onto, and Is-Invertible.

The values of Dom(f) and Ran(f) are uniquely determined by the function, f.
However, the values of Domain(f) and Range(f) may depend on both f and the
context in which the expressions appear. “The” domain or range of f refers to
Dom(f) or Ran(f) and “a” domain or range of f refers to Domain(f) or Range(f).

A function f is one-to-one when every element of Ran(Point-Set-Invert(f)) is a
singleton set. For one-to-one functions, we define the operation Invert as:

Invert(f) = the function mapping elements of Ran(f) into unique inverse ele-

ments of A = f~! such that f~': Ran(f) — A and f~!f(a) = a for all a € A.
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Note that every function f is onto Ran(f), but not necessary onto Range(f). Invert(f)
has Ran(f) as its exact domain.

Many functions of interest have range sets containing functions sharing one domain
(e.g.,in fi A — (B — C), B is the unique domain of all functions in the range of f).
Examples of functions with such ranges of sets of functions include random variable-
valued functions (see Section 6.2) and images with an operation kernel per pixel

[Ritter 1990]. Let X be a set of functions all having domain B. If C = | ] Dom(z),

rzeX
then we have x: B — ( for all z € X. Let f be a function-valued function such that
f:A — X, or equivalently f: A — (B — C). We use a ' to denote the operation that
produces an associated function-valued function f": B — (A — C) satisfying

f'(b)(a) = f(a)(b) for all b€ B and a € A.

Two well-motivated names for the ' operation are dispatch and transpose. Dispatch
([Meyer 1990] pg. 35) refers to the act of “dispatching” an argument (e.g., b) through
all functions in the range to build a function of results. Transpose ([Ritter 1990])
might refer either to the transposition of arguments between f and f’ or to an analogy
to matrix transpose. To avoid confusion with the common usage of transpose dealing
with operators on dual spaces, we use the name Dispatch for the operation. Dispatch
is self inverting and satisfies: :

o Dispatch(f) = f' and f' = f.

Given an operation on a given domain D, it is common practice to extend the
operation to functions returning elements of D. For example, “+” is originally defined
for real numbers, but is then extended to apply to any combination of real numbers
and real-valued functions. Such extended (or induced) operations are given as follows.
We define Induce such that if f: A — B and C is a set of sets of interest, then

Induce : AU(|J (Co— ANU( | (C1— (Co— A)U---

C()EC Co,CleC
—rBU(U(CO—+B))U( U (Cit = (Co—>B)U---
Co€eC Co,C1€C

such that if g: (C,, —» -+ (Cy = (Co — A)-- ), then
Induce(f)(g):(Cn = ---(C1 — (Co — B)--+)
such that for all ¢; € C},

Induce(f)(g)(ex)(en-1) -+ (o) = F((9)(ca)(en1) - (c0))-

Induce can also be extended to multi-argument functions, such as “+”.
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A scheme is a function (usually with finite domain) for which all elements in the
range are sets. The elements of the domain of a scheme are called attributes (of the
scheme). If A is an attribute of a scheme S, then the set S(A) is called the domain
of A (with respect to S). Operations taking schemes as arguments include:

o Cuartesian-Product(S) = the Cartesian product having relation scheme S (Carte-
sian product and relation scheme are defined below).

For a finite scheme S = {(a;, D;) | 0 < i < n}, the Cartesian product (certain sets of
tuples defined in detail below) with scheme S may be written as (ag: Do) M (ay: Dy) X

- M (ay: D,) = M) a;: Do, where the join operation for relations (M) is defined
below.

A tuple is a function (usually with finite domain) associated (if only by context)
with a scheme. A scheme S is a tuple scheme of tuple T if and only if

Dom(T) = Dom(S) and T(A) € S(A) for all A € Dom(S)

or, equivalently, if and only if
T € Cartesian-Product(S).

Operations taking tuples as arguments (beyond those operations already defined that
take functions as arguments) include:

o Has-Tuple-Scheme(T,S) = test for scheme S being a tuple scheme of tuple T

o Tuple-Scheme(T) = some tuple scheme of T with specific choice depending on
context.

An ordered pair is a tuple with domain {0,1}. The Cartesian product of ordered
pairs, 0: Ag X 1: A;, may be abbreviated to A9 x A;. If ¢ is an ordered pair, ¢(0) =
a, and ¢(1) = b, then we write ¢ = (a,b). Operations that take ordered pairs as
arguments include:

i
)

o First(c) = ¢(0)
o Second(c) = ¢(1)=b.

Note: if a Common Lisp cons cells were used to represent an ordered pair, the op-
eration First would be represented by the Common Lisp function first, but Second
would be represented by rest.

An ordered tuple is a tuple with exact domain {7 |0 < i <n—1} for somen > 1.
An ordered n-tuple, ¢, can be written as ¢ = (¢(0),¢(1),...,¢(n —1)). The notation
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for a Cartesian product of ordered tuples can be abbreviated to Dy x Dy x---x D,,_; =
X?__:ID,‘.

A relation is a set of tuples with all tuples sharing a common tuple scheme. If the
scheme S is a tuple scheme of all tuples in a relation R, we say that S is a relation

scheme of R. Let R and R; be relations with exact relation schemes S and S; and
a € Dom(S). Operations that take relations as arguments include:

o Relation-Sch(R) = S = the (exact) relation scheme of R.

o Relation-Scheme(R) = some relation scheme of R.

o Relation-Attributes(R) = Dom(S) = relation attributes of R.
e Relation-Dom(R, a) = Relation-Sch(R)(a).

o Relation-Domain(R, a) = Relation-Scheme(R)(a).

o Join(R,R;) = R M R, = relational natural join of Rand R, = {rUmn |7 €
R, 7 € Ry, and 7(a) = 71(a) for all a € Dom(S) N Dom(S;) }.

o Relation-Project-On(R, A
Relation-Attributes(R) =

= relational projection onto the attributes of A N

)
{{ (a,d)eT|a€e Dom(S)NA}|T€R}.

)
o Relation-Project-Off (R, A) = relational projection onto
Relation-Attributes(R)\A = {{ (a,d) € 7| a € Dom(S)\A} |7 € R}.

o Rename-Attributes(R,f) = {(f(a),d) | (a,d) € R} where f is a 1-1 function

with domain containing the relation attributes of R.

The value of Relation-Sch(R) is uniquely determined by R. The value of Relation-Scheme(R)
may depend on both R and context. Also, note that the relation domain denotes an
element found in the range (not domain) of the relation scheme.

A relation R with single attribute z and Relation-Dom(R,z) = D is written as

R=zx:D.

A functional dependency (FD) of a relation is a pair of subsets of relation attributes
such that the values of the first subset of attributes functionally determine the values
of the second subset. That is, the pair (A, B) is a functional dependency of a relation
R if and only if A and B are both subsets of Relation-Attributes(R) and for all 7, and
73 with equal restrictions to A, 7; and 7, also have equal restrictions to AUB. If (A, B)
is a functional dependency of R, then A and B are called the sets of independent
and dependent attributes (with respect to (A, B)). A relation R with functional
dependency (A, B) can be an argument to operations that include:

o FEvaluate-FD(R, (A, B), a) = the tuple with attributes B corresponding to tu-
ples in R with the tuple a corresponding to the value of attributes A.
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e Has-FD(R,(A, B)) = the test for whether (A, B) is a functional dependency of
R.

A Cartesian product the “largest” relation for a given relation scheme. That
is, for a scheme S, Cartesian-Product(S) is the union of all relations with relation
scheme S. We also have:

Cartesian-Product(S) = { (a,d) | a € Dom(S) and d € S(a)}
and if S = {(a;,D;) |i=0,...,n—1}, then

Cartesian-Product(S) = X2} a;: D;.

The reals is the set R of real numbers. If the scheme S is given by S:{0,...,n —
1} — R, then the n-dimensional reals is given by Cartesian-Product(S). Notice
that R' is not equal to R: R' = 0:R is a relation and R = Relation-Dom(R) is a
simple set. The reals and n-dimensional reals are returned by:

e Reals() = R.
e Reals-N(n) = R".

Other sets of extended reals and integers such as [a,b], [a,)), (a,b], (a,]), i: 7, and
R* with an object for co should be defined.

6.2 Probability Spaces and Random Variables

Probability theory is structured around random variables defined on sample spaces
that have associated probability measures and o-algebras of measurable sets. This
section reviews the relevant facts: the detailed mathematics of the theory can be
found in references such as [Loéve 1977).

A probability space is a combination of a set (called the sample space), a
o-algebra on the set, and a probability measure on the o-algebra. With our notion
of function, a probability measure is equivalent to a probability space (the measure’s
domain yields the o-algebra and a Union-Set on the o-algebra yields to sample space).
A sample space may be a Cartesian product with relation attributes corresponding
to phenomena that span (perhaps redundantly) all degrees of freedom of stochastic
variation in a situation of interest.

A random variable (or random relation with respect to a probability space
(probability measure) is a relation such that 1) a functional dependency exists that
has one independent attribute known as Sample-Space, 2) the domain of Sample-
Space is the sample space, 3) the dependent attributes are all remaining relation
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attributes, and 4) the function associated with the functional dependency is measur-
able. Each dependent attribute, also called a random attribute, typically names a
stochastic phenomenon of interest (e.g., length of a box of uncertain size). Although a
random variable has the Sample-Space independent attribute, the Evaluate-FD oper-
ation is rarely required (or even computable). Operations of more consistent interest
for probabilistic analysis are Relation-Dom and Relation-Domain of the random at-
tributes.

In applying relational operations to random variables, the Sample-Space attribute
almost always appears in a fixed pattern, making it almost superfluous. To sim-
plify the expressions, we define several operations as slight modifications of existing
operations. The operations that take a random variable (X) as an argument include:

e RV-Ran(X) = Relation-Project-Off (X, {Sample-Space}).

o RV-Range(X) = some relation containing RV -Ran(X). Usually, this operation
will return a Cartesian product.

o RV-Sch(X) = Relation-Sch(RV -Ran(X)).

o RV-Scheme(X) = Relation-Scheme(RV -Ran(X)).

o RV-Attributes(X) = Relation-Attributes(RV -Ran(X)).

e RV-Dom(X,a)= Relation-Dom(RV-Ran(X), a).

o RV-Domain(X, a) = Relation-Domain(RV -Ran(X), a).

o RV-Project-On(X, A) = Relation-Project-On(X, A U {Sample-Space}).
e RV-Project-Off (X, A) = Relation-Project-Off (X, A).

o RV-Difference(X,Y) = X\\Y =
RV -Project-On(X XY, RV-Attributes(X)\RV-Attributes(Y)).

The standard relational join is generally the correct operation for combining two
random variables.

Two random variables, X and Y, are said to be disjoint if RV -Attributes(X) N
RV -Attributes(Y) = 0. A random variable with each RV-Dom being R and the
measure being absolutely continuous with respect to Lebesgue measure, is called a
continuous random variable. If each RV -Dom is a finite set, the random variable is
called discrete. With a mixture of the above two conditions, the variable is called
mixed.




6.3 Conditional Distributions

Conditional distributions reflect the “probabilistic” behavior of random variables.
This section begins by describing the structure and operations common to all condi-
tional distributions. Subsections then define several specific conditional distributions.
The subsections cover:

o Gaussian. This section describes the conditional distribution for jointly Gaus-
sian random variables.

o Linear Gaussian. This section describes the conditional distribution of ran-
dom variables that are linear combinations of conditioning random variables
and independent joint Gaussian random variables.

e Discrete. This sections describes the conditional distribution of finite discrete
random variables.

e Multi-modal Linear Gaussian. This section extends the linear Gaussian
analysis to the case of the parameters of the linear combinations depending on
discrete random variables.

If X and Y are random variables and Fy is the o-algebra of the measurable subsets
containing RV -Ran(X), then the conditional distribution P(X | Y )is, P(X | Y)

is the parameterized probability measure:
P(X|Y):Fx x RV-Ran(Y) — [0, 1]

such that for integrable functions f: RV-Ran(X) x RV-Ran(Y) — R we have:

[ PO)@y) [ P(X 1Y )dw)f(z,v) = [ PX,Y)(d(z,9))f(z,).

X is called the conditioned random variable and Y is called the conditioning random
variable. Expressions such as P( X1, X; | Y1,Yz) mean P(X; M X, | V] X Y,). We

also introduce the notation:
P(X€A|Y=y)=P(X|Y)(A,y).

If P(X |Y) is absolutely continuous with respect to a parameterized measure
p( X |Y) with
(X | Y ):Fx x RV-Ran(Y) — [0, 00],

then there is a conditional density function p( X | V') with respect u associated
with P(X |Y)

p(X | Y ): RV-Ran(X) x RV-Ran(Y) — [0, o0]
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such that
[POX 1Y =y)d)f(@) = [w(X Y =y)(de)p( X =2 | Y = y)f(z).

Bayesian inference can be expressed in terms of a small number of operations applied
to conditional distributions. These operations are:

e Bayesian Decompose (with Marginal and Conditional special cases)
¢ Bayesian Compose

e Substitute (with Observe special case)

In the following assume that X, Y, and Z are disjoint random variables and that
integrands are such that all integrals exist. The operations that take conditional
distributions as arguments include:

o Vars(). The set of random attributes of the conditioned random variable is
obtained as: Vars(P(X | Y)) = RV -Attributes(X). The set can be obtained
by inspection from the domain of P(X | Y').

o Conds(). The set of random attributes of the conditioning random variable is
obtained as: Conds(P(X | Y )) = RV-Attributes(Y). The set can be obtained
by inspection from the domain of P(X | Y').

e Bayesian Decompose. Let Y = {y; |1 =10,...,n—1} be a set of n random vari-
ables that can be ordered such that RV -Attributes(y;—;) C RV -Attributes(y;)
for 0 <z < n. Then, the Bayesian decomposition of the conditional distribution
P(yn | Z) is a Bayesian network (Bayesian network is defined in Section 6.4)
given by:

Bayes-Decomp(P(ya | 2),¥) = { P(3\yic1 | 4i-1,2) |0 < i < nwith y_, =

e Marginal. The marginal of P(X XY | Z) rooted on Y is the element of
Bayes-Decomp(P(X X Y | Z),{Y,X X Y})) with conditioned random vari-
able Y:

Margina(P(X XY | Z),Y)=P(Y | Z).

o Conditional. The conditional of P(X X Y | Z) rooted on Y is the element
of Bayes-Decomp(P(X X Y | Z),{Y,X X Y}) with conditioning random
variable including the RV-attributes of Y:

Conditional(P(X XY | Z),Y)=P(X\\Y | Y X Z).
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e Bayesian Compose. The Bayesian composition operation is approximately an
inverse to the Bayesian decomposition. Since the argument to Bayesian compose
is a Bayesian network (e.g., the output of Bayesian decompose), the operation
is defined with Bayesian networks (in Section 6.4).

o Default Density. The conditional density function with respect to the Lebesgue
measure of real valued domains and the counting measure for finite domains is
given by Default-Density(P(X | Y)).

e Mean. For conditional distributions of real-valued random variables, the mean

is Mean(P(X | Y)).

e Covariance. For conditional distributions of real-valued random variables, the
covariance operator is Covariance(P( X | Y')).

6.3.1 Gaussian

The Gaussian conditional distribution for the random variable X with mean
¢ and covariance ¥ is P(X) given by the density function

p(X)=N(p,X): RV-Ran(X) — [0, 00)

where p: RV-Ran(X) — R, L: RV-Ran(X) — RV-Ran(X) is a positive semidefinite
operator, and 1
N(jt, Z)(z) = (2r[S) /I ¥lehemns o),

Several standard operations for conditional distributions specialize in the case of
Gaussian conditional distribution as:

o Conds(P(X)) =0

o Defuult-Density(P(X)) = N(u, 2)
o Mean(P(X)) = p

o Covariance(P(X)) = &

Figure 6-1 and Figure 6-2 illustrate one and two dimensional Gaussian density
functions. Figure 6-1 shows the general one dimensional Gaussian distribution. Fig-
ure 6-2 shows the two dimensional Gaussian distribution for random variables {x,y}
with zero mean and covariance matrix:

R= Ex* Ezy\ _ 1 09
"\ Eyz Ey* ) \09 1 J°
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Figure 6-1: Gaussian density p(z) for ¢ ~ N(u,o?)
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Figure 6-2: Gaussian density p(z,y) for o, =1, 0,y = 1,and
Oy = 0.9




Figure 6-3: Density p(y | 2 ) for y = 0.5z + v with v ~ N(0,1)

6.3.1.1 Linear Gaussian

For real-valued Y, the linear Gaussian conditional distribution of X is P( X |
Y ) and is a Gaussian density on X with mean as an affine function of y € RV-Ran(Y).
The covariance is independent of y. A linear Gaussian conditional distribution has
operations specialized as:

o Default-Density(P(X | Y =y))=N(4o+ > A()y(v),%)
Y€Dom(y)

o Mean(P(X | Y =y)) = Ao+ Z A(v)y(v)

YEDom(y)

o Covariance(P(X | Y =y))=2X

Figure 6-3 illustrates the conditional density function associated with a linear Gaus-
sian conditional distribution. In this case, the linear Gaussian relation is y = 0.5z 4+ u
with v distributed as a zero mean unit variance Gaussian random variable. Note
that the conditional density function has infinite area, clearly implying it is not the
unconditional probability random variable. However, for every fixed z, the slice along
y is the density for a Gaussian variable of unit variance.
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6.3.2 Multi-modal Linear Gaussian

For RV-Ran(Y) = RV -Attributes(Y) — R and RV-Ran(Z) a discrete set of the
multi-modal linear Gaussian conditional distribution P( X |Y,Z) is defined
such that for all y € RV-Ran(Y) and z € Ran(Z), P(X | Y =y,Z = z) is a
Gaussian density on Ran(X), with mean as an affine function of y and an arbitrary
function of z. The covariance depends only on 2. A multi-modal linear Gaussian
conditional distribution has operations specialized as:

o Default-Density(P(X | Y =y, Z=2))=N(Ao.+ Y, A(7,2)y(y), L)

~yEDom(y)

o Mean(P(X | Y =y, Z=2)) = Ao, + Z Ay, 2)y(v)

~v€Dom(y)

o Covariance(P(X | Y =y, Z=2)) =2,

6.3.3 Discrete

For the discrete conditional distribution, P(X =z | Y =y) is a table.

6.4 Bayesian Networks

Bayesian networks organize Bayesian inference around sets of conditional distribu-
tions. This section defines a system of Bayesian network objects and operations. For a
rigorous development of the general theory of conditional distribution decomposition
underlying Bayesian networks, see [Loeve 1978], especially pg. 26-30.

A Bayesian network is a constrained (and usually finite) set of conditional dis-
tributions supporting operations for computing joint distributions of all random vari-
ables. The constraint satisfied by Bayesian networks is that the conditional distribu-
tions can be ordered so that if a random attribute appears in a conditioned random
variable, it does so in only one such variable, and always before appearing in any
conditioning random variable. With this ordering constraint satisfied, a probabilis-
tic chain rule can be applied to produce a unique joint distribution over all random
variables.

An example of a Bayesian network is the set of conditional distributions
A={P(W,X|Y,Z),P(Y | Z),P(V|Y),P(2)}

where V, W, X, Y, and Z are disjoint random variables over the same probability
space. Figure 6-4 shows A represented as a graph. The bipartite graph has conditional
distribution nodes (triangles) connecting random variables (circles). For clarity in the
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P(W,X1Y,Z) P(VIY)

{PCWXIY,Z),P(YIZ),P(VIY), P(Z)}
Figure 6-4: Example Bayesian network

example, each triangle node is labeled with the associated conditional distribution.
This labeling is superfluous (and not used in practice) since the conditioning and
conditioned random variables are the join of random variables attached to the tail
and point of the triangle, respectively.

The chain rule constraint on a set of conditional distributions is equivalent to a
certain relation, <, being a partial order. Here, < is the transitive closure of the
relation < in conditional distributions, where C; < C, if some random attributes of
the conditioning random variable of C» is an attribute of the conditioned variable of
C;. These relations lead to several operations on Bayesian networks:

o Roots and Leaves. The roots and leaves of a Bayesian network N are sets of
conditional distributions given by,

Roots(N) = { C' | C' € Nand there is no Cy € N such that C; < C'}
and

Leaves(N) = { C | C € Nand there is no C; € N such that C < C, }.

¢ Is-Root(N,C) and Is-Leaf(N, C). These test whether C is a root or leaf of N.
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o Parents, Ancestors, Children, Descendants. Each conditional distribution C in
a Bayesian network N has several sets of associated conditional distributions,

Parents(N,C) = {Ci1|Ci € N,C;<C}
Ancestors(N,C) = {C|Ci€ N,C; <C}
Children(N,C) {Ci|CieN,C<C}
Descendants(N,C) = {C;|Ci € N,C <Cy}

o [s-Parent(N,C, C;), Is-Ancestor(N, C, Cy), Is-Child(N, C, C;),
Is-Descendant(N, C, C;). There test whether C is a parent, etc. of C; in N.

The operations on Bayesian networks that involve Bayesian inference are Bayesian
compose, marginal Bayesian compose, substitute, observe, and posterior. These are

defined by:

e Bayesian-Compose. Bayesian composition essentially inverts Bayesian decom-
position and is defined for any Bayesian network. For the case of two conditional

distributions P(W | X ) and P(Y | Z) with Y and W X X disjoint, Bayesian

decomposition satisfies:

Bayes-Comp({P(W | X ),P(Y |Z)}) = P(WNXY |(XXZ)\\(WNXY))
= P(WNXY |(XXZ)\\W)

where

Bayes-Decomp(P(W X Y | (X XM Z)\\W), W)
={P(WI[(XXZ\\W),P(Y | WX XX Z)}.

Further, the measures of P(W |
Z\\W and the measures of P(Y
(W X X)\\Z.

For an arbitrary Bayesian network N = {P( X; | ¥;)} where X; and o<[x']<'(Xj X
<j<i

(X X Z)\\W ) are independent of values of
| WX X X Z) are independent of values of

Y;) are disjoint, the Bayesian decomposition satisfies:
S - = X X XY X X; ).
Bayes-Comp(N) P(izox’ | (izoy’)\\izoX )
o Marginal-Bayes-Comp. Marginal Bayesian composition is a convenience for

organizing computations for efficiency. The operation defined in terms of other
operations by:

Marginal-Bayes-Comp(N, W) = Marginal( Bayes-Comp(N), W).
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o Substitute. Substitution on a Bayesian network yields another Bayesian network
with one conditional distribution replaced with a given one. Usually, the origi-
nal network has to go through (at least) a composition and decomposition step
to derive a conditional distribution that can be simply replaced. Thus, to sub-
stitute Q( X | V) into a Bayesian network defining the distribution P(X,Y, Z),
we decompose P(X,Y, Z) as

P(X,Y,Z) = Bayes-Comp({P(Y),P(X | Y ),P(Z| X,Y)})

and replace the P(X | Y) with Q( X | Y ). The terms in the decomposition
are:

Marginal(P(X,Y,Z2),Y)
Marginal(Conditional(P(X,Y,Z),Y), X)
Conditional( Conditional(P(X,Y,Z),Y), X).
Thus, the defining property of substitute is:

Substitute(P(X,Y,Z2),Q(X | Y )) = Bayes-Comp({P(Y),Q(X | Y),P(Z | X,Y)}).

For Bayesian network computations, a Substitute is typically symbolically repre-
sented through intermediate computations until obtaining the necessary Bayesian
decomposition allowing direct replacement of one conditional distribution for
another.

e Observe. Observe is a special case of Substitute. It substitutes for a pure prior
conditional distribution (Conds() = @) a new prior conditional distribution
with probability mass 1.0 allocated to a single value of the conditioned random
variable. Letting y be a value of Y and Q,(Y") be the distribution that assigns
probability 1.0 to Y = y, then

Observe(P(X,Y),y) = Substitute(P(X,Y),Q,(Y))
= Bayes-Comp(Q,(¥), P(X | Y').

o Posterior. Bayesian network inference algorithms are designed to quickly and
accurately compute posterior conditional distributions. The following computes
the posterior conditional P(X |Y,Z = z*) from a Bayesian network V:

Posterior(N,X,Y,z")
= N.Bayes-Comp.Observe(z*).Marginal(X X Y).Conditional(Y)

where the left associative infix notation f(z,y) = z.f(y) reduces nesting of
parentheses.
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The Symbolic Probabilistic Inference algorithm, based on set factoring (section
6.1 of [Li 1992]), efficiently processes single queries and multiple ad hoc queries.
For processing an “all posterior marginals” query, a modification to emulate
to operation of the Lauritzen-Spiegelhalter algorithm would further improve
efficiency.

For the most general implementation of Bayesian networks, Bayesian compose
would work on any combination of types of conditional distributions. Also, Bayesian
decompose would be capable of producing all asked for combinations of conditional
distribution types. Not providing for all combinations results in constraints on the
forms of Bayesian networks allowed (such as no discrete variable following a continu-
ous variable). If a Bayesian network contains multiple types of conditional distribu-
tions, the implementation should support Bayesian compose and decompose for those
multiple types.

Algorithm efficiency partly depends on the efficiency of Boolean-like operations over
random variables and conditional distributions. Such operations include: finding the
join or rv-difference of random variables, and finding all conditional distributions with
conditioning (or conditioned) random attributes intersecting the random attributes
of other random variables. Auxiliary software structures and conventions can help
streamline such operations. Potentially useful auxiliary structures and conventions
include:

e Assigning unique numbers to the random attributes, random variables, and
conditional distributions, and representing all sets as ordered sequences of ele-
ments.

e Storing pointers in conditional distributions software objects to predecessor and
successor conditional distributions, and to conditioning and conditioned random
variables.

Capabilities that may be considered later include:

o Stochastic simulation techniques
e Term computation techniques

o Network preprocessing to emulate the clique tree processing of the evidence
potential algorithms.

6.5 Geometric/Observation Models

The IUE should be able to represent a scenario of multiple sensors (including cam-
eras), multiple collections, and uncertain site models. This can require representing
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geometric/observation quantities with random variables and use conditional distribu-
tions to represent relations among the random variables. Differential manifolds can
represent such physical quantities, and tangent approximations can represent approx-
imate probability distributions on the physical quantities. The following subsections
describe manifolds with tangent approximations, an overall modeling approach, and
some specific geometric/observation models.

6.5.1 Differential Manifolds and Gaussian Tangent Approximations

IU practitioners are often directly concerned with physical objects (e.g., buildings,
sensor platforms, sensors, and images), transformations between objects, and random
variables of (or uncertainty in) objects and transformations. To analyze physical
situations, we set up conceptual mappings from physical objects and transformations
to vectors of numbers. Objects and two types of useful mappings (charts and tangent
maps) from objects to vectors are illustrated in Figure 6-5. This section elaborates

Function between Manifolds

Set of Abstract Objects or Points:
Manifold-1

@ A Nominal Point

Manifold-2

Tangent-Map

Chart (Coordinate System)

Coordinate Space Coordinate Transformation Coordinate Space
>
? Coordinates-Of-Tangent lTangent-Of-Triple... T L
\\
Tangent Space Differential Tangent Space
—

Figure 6-5: Representing abstract objects with linear spaces

on the entities depicted in the figure.

We will be describing sets of physical objects or physical situations (e.g., the set
of boxes of all possible sizes, or a set of possible camera orientations) that have a
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topology (of open sets) and can be represented locally using vector spaces. Such a
set is called a manifold.

One type of useful mapping of a manifold to vectors is the chart or coordinate
system. Such a mapping uniquely identifies each object (or point) in an open subset
of the manifold with a vector in some Banach space (complete normed linear space).
A chart is a continuous and locally continuously invertible function from an open
subset of the manifold to a Banach space (often either R™ or a linear space isomorphic
to R™). Because the Banach space containing the range of a chart is often R™, the space
is called a coordinate space and its vectors are called coordinates or coordinate
vectors. If all coordinate spaces are isomorphic to R™ (i.e., the space is of finite
dimensionaln), then the manifold is said to be n-dimensional or of dimension n. For
a chart ¢, the exact range, Ran(¢y), is an open subset of a Banach space. In most
contexts, the Banach space itself would be the value of Range(y).

Two charts ; and ¢; on the same manifold are compatible if ;07! is continuous
and continuously invertible on ¢(Dom(p;)N Dom(ps)). A set of pairwise compatible
charts is called an atlas. For our applications, it is usually the case that all charts of
interest for a given manifold are compatible.

As a mapping, a coordinate system (chart) represents everything we know about
the “meaning” of coordinate vectors as representations for objects in a manifold. On
the other hand, a coordinate space could be the range space of many charts, and is
therefore without intrinsic manifold-related meaning.

A chart defines an alternate representation of points in a manifold as coordinates
In a coordinate space. Similarly, a function f from a manifold with chart ¢y, to
another manifold with chart ¢,, has an alternative representation as a function be-
tween the coordinate spaces of ¢o; and ¢,. This representation is called a coordinate
transformation and is defined as f,, ,, = @20 f o o7'. The domain of f,, ., is
@i (Dom(p;)NDom(ps)). Also, f restricted to Dom(p1)NDom () is 9310 fo,, 0, 001
In general, a coordinate transformation may be nonlinear and not amenable to exact
analysis.

Linearization is a powerful tool for analyzing a function between manifolds. To
linearize a function between manifolds, we introduce a linear space (called a tangent
space or tangent vector space), to represent an infinitesimal region of a manifold.
The tangent space is independent of particular choice of chart. We also introduce
a linear mapping (called a differential) between tangent spaces. Taken together, a
differential and it’s domain and range tangent spaces linearize the nonlinear situation
around a specific nominal point of the original function’s domain.

To complete the relation between tangent spaces and linearization, we need to
introduce the operation Derivative-Map. This operation acts on functions mapping
between Banach spaces (not between general manifolds). If f is a function from an

41




open subset of a Banach space to another Banach space and z is an element of the
domain of f, then

o Derivative-Map(f,z) is (if it exists) the continuous linear mapping from the
Banach space containing Dom(f) to the Banach space containing Ran(f) such
that for vectors y in the linear space containing Dom(f) we have

lim flz +y) — (f(z) + Derivative-Map(f,z)(y))

= 0.
[y[—0 ly]

Each point z of a manifold has an associated tangent space, T,. A tangent or
tangent vector in T, is modeled as an equivalence class of curves passing through «.
By curve, we mean a function from an open interval in R containing 0 to the manifold
containing z. Two curves 4; and 7, are equivalent if and only if v,(0) = v2(0) = z
and they pass through z with identical “direction” and “rate.” That is, for some
chart ¢ with z in its domain we have

Derivative-Map(p 0 v,,v;7 ' (2)) = Derivative-Map(p 0 v2,75 ' (z)).

If the derivative condition holds for one chart it hélds for all charts.

We call the point associated with a tangent space the nominal point or point
of linearization. Tangent spaces (and therefore tangents) are uniquely paired with
the original nominal points. That is, the nominal can be uniquely recovered from a
tangent space or from a tangent. It follows that tangent spaces for different nominals
are always disjoint.

There is a mapping to tangents from triples where the triples have the form (z, ¢, v)
with  the nominal point in the manifold, ¢ a chart with z in its domain, and v a point
in the coordinate space of ¢. Two triples (21, p1,v1) and (z2, ps, v2) map to the same
tangent if and only if z; = =, and Derivative-Map(p2 097, 0, (2))(v;) = vs. If @ is
a chart with « in its domain, the tangent space at z is isomorphic to the coordinate
space containing Ran(p(z)). A triple (z,¢,v) can be thought of as representing a
“p-linear” curve, v, satisfying v(h) = ¢~ (¢(z) + hv) for small h € R. The tangent
vector of the triple is the equivalence class of 7.

Operations relating combinations of manifolds, charts, coordinates, tangents, and

tangent spaces include:

o Nominal-Of -Tangent-Space(T) = z, the nominal point for tangent space T}.

o Nominal-Of -Tangent(t) = z, the nominal point for the tangent t. (In the
theory of differential manifolds, this operation is the projection onto the base
of a tangent bundle.)

o Nominal-Coordinates-Of - Tangent-Space(p, T;) = ¢(z), where
z = Nominal-Of - Tangent-Space(T;). '
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Nominal-Coordinates-Of - Tangent(p, t) = ¢(z), where
z = Nominal-Of - Tangent(t).

Coordinates-Of - Tangent(p, t) = v where (z, ¢, v) represents tangent t.

Offset-Point-Of - Tangent(p, t) = ¢~ (p(z)+v) where 2 = Nominal-Of - Tangent(t)
and v = Coordinates-Of -Tangent(p, t). (Note that the indicated ¢! may not
exist for all combinations of ¢ and ¢.) For “small” tangents, this operation be-
comes independent of choice of chart. The operation represents the linearization
approximation in an infinitesimal region of the nominal.

Offset-Coordinates-Of - Tangent(p, t) = ¢(z) where
t = Offset-Point-Of -Tangent(p, t).

Tangent-Space-Of -Tangent(t) = T, where T} is the tangent space containing
tangent ¢.

Tangent-Space-Of -Nominal(X,z) = T, the tangent space for manifold X at
point z € X.

Tangent-Of - Triple- With-Nominal(z, ¢, v) = t, the tangent represented by (z, ¢, v)
as described above.

Tangent-Of - Triple- With-Space(T, ¢, v) = ¢, the tangent represented by (z, ¢, v)
where # = Nominal-Of - Tangent-Space(T).

Default-Chart-Of - Tangent-Space(T) = some chart ¢ such that for any tangent
t in tangent space T,
(Point-Of - Tangent(t), ¢, Default- Point(t)) represents t.

Default-Chart-Of - Tangent(t) = some chart ¢ such that
(Point-Of - Tangent(t), p, Default-Point(t)) represents the tangent ¢.

Default-Coordinates-Of - Tangent(t) = v, where v is the coordinate vector in
the coordinate space of ¢ = Default-Chart-Of - Tangent(t) such that (z,¢,v)
represents ¢.

Default-Offset-Coordinates-Of - Tangent(t) = ¢(z), where
@ = Default-Chart-Of -Tangent(t) and ¢ = Offset-Point-Of - Tangent(p, t).

Default-Manifold-Of -Point(z) = X, where X is some manifold containing z.

Default-Nominal-Coordinates-Of - Tangent(t) = ¢(z) where
z = Nominal-Of -Tangent(t) and ¢ = Default-Chart-Of -Tangent(t).

Default-Nominal-Coordinates-Of - Tangent-Space(T) = ¢(z) where
z = Nominal-Of - Tangent-Space(T) and ¢ = Default-Chart-Of - Tangent-Space(T).
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o Differential-Map(f,z) = the differential at point x of the function f: X — Y
between manifolds X and Y. The differential (if it exists) is a continuous
linear function from T, = Tangent-Space-Of -Nominal(Dom(f),z) to Ty, =
Tangent-Space-Of -Nominal(Ran(f), f(z)) such that if 4 is a curve in the equiv-
alence class of a tangent t € T;, then f o+ is a curve in the tangent vector given
by Differential-Map(f,z)t. Equivalently, for all tangent vectors y € T¥(,) and
charts ¢; on @ and ¢, on f(z) we have

Differential-Map(f, z)(y)
= Tangent-Of - Triple-With-Point(f(z), @2, Derivative-Map(py o f 0 7", 0, (2))
(Coordinates-Of - Tangent(p;,y)))

The operations (excluding derivatives and differentials) are summarized in Table 6-
“n

1. In the table, entries with “i” or “0” indicate types of inputs or outputs, respectively,
to a given operation.

Table 6-1: Tangent space related operations

| Operation |X|g0|:c|v|T]t|

Nominal-Of-Tangent-Space o i
Nominal-Of-Tangent o 1
Nominal-Coordinates-Of-Tangent-Space 0 i
Nominal-Coordinates-Of- Tangent o i
Coordinates-Of-Tangent i 0 i
Offset-Point-Of-Tangent i|o i
Offset-Coordinates-Of-Tangent 1 o) 1
Tangent-Space-Of-Tangent o1
Tangent-Space-Of-Nominal i 1 o
Tangent-Of-Triple-with- Nominal 1|11 o
Tangent-Of- Triple-with-Space i 1[1]o
Default-Chart-Of-Tangent-Space o i
Default-Chart-Of-Tangent o i
Default-Coordinates-Of-Tangent o 1
Default-Offset-Coordinates-Of- Tangent o i
Default-Manifold-Of-Point ) i
Default-Nominal-Coordinates-Of- Tangent o i
Default-Nominal-Coordinates-Of- Tangent-Space ol i

A random variable may have its range in a manifold and have approximating random
variables on the manifold’s tangent spaces. Suppose X:{ — M is a random variable
taking on values in a manifold M (assuming open sets in M are measurable) and that
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a random variable X, exists in the tangent space of M at m € M such that for any
bounded set S in the coordinate space the distribution of X,, satisfies

o PUS™elm) +9) [y € 85) ~ hess dyN (0, D)) _
§—0 62

We call any random variable such as X,, a Gaussian tangent approximation of
X at m.

If f: M — N is a differentiable function between manifolds, X is a random variable
on M, X, is a Gaussian tangent approximation of X at m, then a Gaussian tangent
approximation of fo X at f(m) € N is Yy(n) defined by

Ys(m) = Differential-Map(f, m)X,,.

6.5.2 Modeling Approach

A modeling approach based on the above concepts is to:

e Identify physical and abstract objects (or points) of interest. Points include
physical structures (boxes, polygonal shapes, ellipses, etc.), frames, exterior or
interior orientations of a camera, images, and image features. More abstract ob-
jects include point configurations, transformations between frames, and sensor
projections. Normally each class of interesting points forms a manifold (with
at least one chart described in terms of physical items).

e Identify random variables taking on points as values. There may be uncertainty
concerning the size or orientation of a box, the external orientation or internal
orientation of a camera, or the location of an extracted image feature. Such
uncertainties are represented with random variables. Instead of directly analyz-
ing these variables and their distributions, we nearly always form and analyze
Gaussian tangent approximations.

e Identify the functions (and corresponding conditional distributions) relating
points and random variables. And collect them into a scene (set of such func-
tions). The functions may be that a box face is parallel in the plane of the
ground, the box is 20 to 30 meters long, the projection of 3-space location de-
pends on camera orientation, etc. Transformations between physical and or
image spaces include: rigid motion, translation, rotation, scaling, general linear
transformation, general affine transformation, orthogonal projection, perspec-
tive projection, etc.

e Identify the charts (or coordinate systems) that map points into R™ or other Ba-'
nach spaces. With charts, each set of points becomes a manifold. Charts may
represent such notions as a box’s shape as described by the triple of length,
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width, and height in meters, shape described by diagonal distances in inches,
or a camera’s external orientation being described by three rotation angles and
three offsets [w ¢ k X ¥ Z] with rotations and translation performed in a partic-
ular order and with respect to a particular frame of reference.

e Recognize that to each point in a manifold there corresponds a tangent space.
Given a point and a chart, the Banach space containing the range of the chart
1s isomorphic to the tangent space.

o Identify Gaussian tangent approximation random variables in the tangent spaces
of manifolds. These approximate the random variables in the original spaces.
Wherever original random variables on manifolds are functionally related to
another random variable, relate the corresponding Gaussian tangent approxi-
mations by the differential of the function between manifolds.

e Collect the conditional distributions of the jointly Gaussian tangent approxi-
mations of the functions in the scene into a Bayesian network, attach available
evidence (using Observe), and solve queries using a Bayesian network inference
algorithm. Use the posterior mean values to select new nominals for relineariza-
tion. Repeatedly relinearize and resolve until solutions converge with respect
to posterior covariances.

o As necessary, use the operators of Table 6-1 to map between original mani-
folds, coordinate spaces, tangent approximations, and other entities discussed
in Section 6.5.1.

A scene represents a scenario of image collections. It denotes the physical things
of interest and their causal relations (both deterministic and stochastic). Formally, a
scene is a Bayesian network. The random attributes denote various degrees of freedom
that span the variations found in different realizations of the collection scenarios.
The conditional distributions represent causal relations between the physical things
denoted by the random attributes.

RV-Ran’s of random variables of scenes may contain many types of objects, includ-
ing: physical objects, coordinate spaces, tangent spaces, transformations, sensors,
collection events, images, and extracted features.

A scene supports operations beyond those for ordinary Bayesian networks. Ad-
ditional operations include those for restricting attention to differentials between
tangent spaces and for extracting and manipulating Bayesian networks on tangent
spaces.
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6.5.3 Manifolds of Interesting Objects and Transformations

This section describes the several manifolds of physical objects and transformations
of general interest for IU. Not all manifolds require an explicit software class to
be represented. For instance, a manifold of triangles can be described within the
manifold of polygons without creating a new class. However, it may be possible
to more efficiently implement triangles as a separate class. It is also possible to
arrive at many particular spatial and image transformations from a general affine
transformation.

The following paragraphs list the manifolds in rough order of: objects free to move
in space, objects constrained to move with the earth, transformations between objects,
sensor projections, image objects, and transformations between image objects.

Spatial Point A spatial point is smoothly varying space-time trajectory. Al-
though not necessary, here and throughout we assume a Euclidean space-time (i.e.,
we assume all relative velocities are small and gravity is weak). The set of spatial
points is an infinite dimensional manifold with coordinate spaces isomorphic to the
space of smooth functions from (0,1) to R®. An interesting special case of spatial
points might have them constrained to move rigidly with some given object such as
the earth or sensor.

Spatial Point n-Set A spatial point n-set is a set of n spatial points. For
fixed n, the set of spatial point n-sets forms an infinite dimensional manifold with
coordinate spaces isomorphic to the space of smooth functions from (0,1) to R®".
An interesting special case of Spatial Point n-Set might have the constituent spatial
points constrained to move rigidly with some given object such as the earth or a
Sensor.

Spatial Point n-Tuple A spatial point n-tuple is a tuple mapping n at-
tributes into spatial points (not necessarily distinct). The set of attributes is usually
{0,1, ...,n — 1}, but arbitrary labelings of points are allowed. For fixed n, the set
of spatial point n-tuples forms a 3n-dimensional manifold. Any transformation that
acts on spatial points has an induced version (page 25) that acts on spatial point
n-tuples. An interesting special case of Spatial Point n-Tuple might have the con-
stituent spatial points constrained to move rigidly with some given object such as the
earth or a sensor.

Rigid Spatial Point n-Set A rigid spatial point n-set is a spatial point n-set
with elements that could be affixed (with no sliding) to some rigid object undergoing
some smooth rigid motion. For fixed n, the set of rigid n-sets forms an infinite
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dimensional manifold with coordinate spaces isomorphic to the product space R x
((0,1) smoofh R3n~kn \where k, is given by:

| n (Points) | k, (Dimension) |

1 0
2 1
n >3 kn=3n-06

An interesting special case only deals with rigid spatial point n-sets constrained to
move rigidly with some given object such as the earth or a sensor.

Rigid Spatial Point n-Tuple A rigid spatial point n-tuple is a spatial point n-
tuple with domain elements that could be affixed (with no sliding) to some rigid object
undergoing some smooth rigid motion. For fixed n, the set of rigid n-tuples forms
an infinite dimensional manifold with coordinate spaces isomorphic to the product
space R x ((0,1) smooth R3n—kn where ki, is as given above. An interesting special
case only deals with rigid spatial point n-tuple constrained to move rigidly with some
given object such as the earth or a sensor.

n-Configuration An n-configuration is an equivalence class of rigid spatial
point n-sets. Two rigid spatial point n-sets are equivalent if there is some moving
rigid body that could “transfer” the points of one set at one time to coincide with the
points of the other set at some time. To avoid dealing with manifolds with boundary,
we further restrict n-configurations with n > 3 to have no symmetries under rotation
and translation of the rigid body. The set of n-configurations forms a k,-dimensional
manifold with &, as given above for rigid spatial point n-sets.

Earth-Fixed Point An earth-fixed point is a spatial point that, over time,
maintains a constant offset from every spatial point affixed to solid earth. The con-
stant offset is one linear combination of vectors connecting, over time, some dis-
tinguished locations on (or in) solid earth. The set of earth-fixed points forms a
3-dimensional manifold. Typically, earth-fixed points will be “produced” by chains
of transformations applied to earth-fixed frames.

Given a reference spheroid, a geodetic coordinate system is a chart that maps
earth-fixed points to height above the spheroid, latitude, and longitude.

Earth-Fixed n-Set An earth-fixed n-set is a set of n earth-fixed points. For
fixed n, the set of earth-fixed n-sets forms a 3n-dimensional manifold.
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Earth-Fixed n-Tuple An earth-fixed n-tuple is a rigid spatial point n-tuple
where the range elements are earth-fixed points. For fixed n, the set of earth-fixed
n-tuples forms a 3n-dimensional manifold.

Earth-Fixed Frame An earth-fixed frame, 7, is an earth-fixed 4-tuple having
attributes {0,1,2,3} such that the vectors 7, — 79, 72 — 70, and 73 — 7¢ form a right-
handed orthonormal sequence. The earth-fixed point 7y is called the origin. The
vector 7; — 7o 1s called the z-, y-, and z-axis for « = 1, 2, and 3, respectively. The set
of earth-fixed frames forms a 6-dimensional manifold.

Geocentric Frame A geocentric frame is an earth-fixed frame with origin at the
center of a reference spheroid, z-axis directed toward the north pole, z-axis such that
the -z plane contains the Greenwich meridian. Given a reference spheroid, there is
just one geocentric frame (i.e., the set consisting of that frame forms a 0-dimensional
manifold).

Local Vertical Frame A local vertical frame, is an earth-fixed frame with
z-axis (local up) pointing away from the center of a reference spheroid and z-axis
(local east) pointing along the cross product the astronomical north vector with the
z-axis. The y-axis then points to local north. Given a reference spheroid, the set of
local vertical frames forms a 3-dimensional manifold.

Spatial Line A spatial line is a doubly infinite set of points as would be obtained
by extending the z-axis of a spatial frame. The set of all spatial lines is an infinite

dimensional manifold with coordinate spaces isomorphic to (0,1) smooth R4,

Spatial Ray A spatial ray is a singly infinite set of points as would be obtained
by extending the positive z-axis of a spatial frame. The set of all spatial rays is an

e s . . . . . . th 5
infinite dimensional manifold with coordinate spaces isomorphic to (0,1) "% R®.

Spatial Line Segment A spatial line segment is a bounded set of points as
would be obtained by choosing an interval along z-axis of a spatial frame. The set
of all spatial line segments is an infinite dimensional manifold with coordinate spaces
. . smooth n g
isomorphic to (0,1) —" R®.

Spatial Plane A spatial plane is the set of points as would be obtained by taking
all affine combinations of points on z- and y-axes of a spatial frame. The set of all
spatial planes is an infinite dimensional manifold with coordinate spaces isomorphic
to (0,1) 223" R3, |
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Spatial Planar n-Polygon A spatial planar polygon is a planar rigid spatial
point set that consists of a n vertices and connecting line segments. Segments are
disjoint except that every vertex has exactly two abutting line segments. The set of all
spatial planar polygons with angles other than 0° or 180° at each vertex is an infinite

dimensional manifold with coordinate spaces isomorphic to R?"~2 x (0,1) "22%" R®
Spatial Triangle A spatial triangle is a spatial planar 3-polygon.

Spatial Rectangle A spatial rectangle is a spatial planar 4-polygon with all
right angles.

Spatial Square A spatial square is a spatial rectangle with equal length sides.

Spatial Vector A spatial vector is the equivalence class of differences between
points that could be connected by parallel transport across a rigid object. The set of
all spatial vectors is an infinite dimensional manifold with coordinate spaces isomor-

phic to (0,1) 223" R3.

Spatial Direction A spatial direction is a spatial vector of unit length. The
set of all spatial directions is an infinite dimensional manifold with coordinate spaces

isomorphic to (0,1) "22%" R?,

Spatial Box A spatial box is a rigid rectangular box (6-faced polyhedron with
all right angles) with a smooth trajectory in space-time. A spatial box has a tuple of
four distinguished vertices, the first vertex adjacent to the remaining three. If 7 is the
tuple of vertices, then 7y is called the origin and 7; is called the z-, y-, and z-vertex
for 2 = 1, 2, and 3, respectively. Also, 7; — 7y is called the z-, y-, and z-edge vector
and the ray in that direction is called the z-, y-, and z-axis. Also, the tuple of axes
1s assumed to form a right-handed system. The set of spatial boxes forms an infinite

dimensional manifold with coordinate spaces isomorphic to R® x ((0,1) "2%" R®,

Half-Infinite Spatial Box A half-infinite spatial box is a rigid rectangular
box, one finite rectangular face, and four half-infinite rectangular faces, leaving the
final finite face to exist at infinity. The box is assumed to have a smooth trajectory
in space-time. A half-infinite spatial box has a tuple of three distinguished vertices,
the first vertex adjacent to the remaining two. If 7 is the tuple of vertices, then 7o
is called the origin and 7; is called the z- and y-vertex for ¢ = 1,2 respectively. The
rays from the origin to the a-vertex is called the a-axis, for & = “z and “y”. The

50




ray from the origin along the infinite length of the box is called the z-axis. Finally,
the tuple of axes is assumed to form a right-handed system. The set of half-infinite
spatial boxes forms an infinite dimensional manifold of coordinate spaces isomorphic

to R? x ((0,1) 22" RS,

Frame Coordinate System A frame coordinate system is a chart on the
space of points spanned by the frame vertices. The chart maps a point to its Carte-
sian (z,y,z) coordinates with respect to the frame. Given a frame, there is one
frame coordinate system (i.e., the set consisting of that chart forms a 0-dimensional
manifold).

Frame-to-Point Transformation A frame-to-point transformation maps
a spatial frame to the spatial point at a given offset from the frame’s origin. The
offset is a fixed linear combination of the frame’s axes. Given an offset, the set of all
frame-to-point transformations is 0-dimensional (a single element).

Spatial Translation Given a spatial frame, a spatial translation is a translation
of all spatial points with respect to the frame. For a given spatial frame, the set of
spatial translations forms a 3-dimensional manifold.

Spatial Rotation Given a spatial frame, a spatial rotation is a rotation of all
spatial points with respect to the origin of the frame. For a given spatial frame, the
set of spatial rotations forms a 3-dimensional manifold.

Spatial Rigid Motion Given a spatial frame, a spatial rigid motion is a rigid
motion of all spatial points with respect to the frame. For a given spatial frame, the
set of spatial rigid motions forms a 6-dimensional manifold.

Spatial Directional Scaling Given a spatial frame, a spatial directional scal-
ing is a scaling in one direction of all spatial points with the expansion centered at the
origin of the frame. For a given spatial frame, the set of spatial directional scalings
forms a 3-dimensional manifold.

Spatial Linear Transformation A spatial linear transformation is a com-
position of a spatial rotation and spatial directional scalings, all defined with respect
to a common origin. For an origin, the set of spatial linear transformations forms a
9-dimensional manifold.
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Spatial Affine Transformation A spatial affine transformation is a com-
position of a spatial linear transformation and spatial translation. The set of spatial
affine transformations forms a 12-dimensional manifold.

Frame-to-Box Transformation A frame-to-box transformation maps a spa-
tial frame into a spatial box with corresponding frame and box axes parallel and with
frame origin at a fixed point with respect to the box. The fixed point is located as
an offset from the box origin given by a linear combination of edges vectors (unnor-
malized). The coefficients of the offset are assumed to be given parameters of any
manifold of frame-to-box transforms. Given the offset coordinates of frame origin,
the set of frame-to-box transformations is a 3-dimensional manifold. The default
coordinate system has coordinates corresponding to box length, width, and height.

Box-to-Frame Transformation A box-to-frame transformation maps a spa-
tial box into a spatial frame with corresponding box and frame axes parallel, with
frame origin at a fixed point with respect to the box. The fixed point is located as
an offset from the box origin given by a linear combination of edges vectors (unnor-
malized). The coeflicients of the offset are assumed to be given parameters of any
manifold of box-to-frame transforms. Given the offset coordinates of frame origin,
the set of box-to-frame transformations is a 0-dimensional manifold (a completely
specified, projection-like mapping that projects off the shape of the box leaving only
a frame).

Spatial Ellipsoid A spatial ellipsoid is a rigid ellipsoid with a smooth trajectory
in space-time. An ellipsoid has a tuple of four distinguished spatial points located at
the centroid and each intersection of principal axis with the surface of the ellipsoid.
If 7 is the tuple of vertices, then 7y is called the origin and 7; is called the z-, y-,
and z-surface point for ¢ = 1, 2, and 3, respectively. Also, 7; — 7 is called the z-, y-,
and z-vector (principal axis vectors) and the ray in that direction is called the z-, y-,
and z-axis. Also, the tuple of axes is assumed to form a right-handed system. The
set of spatial ellipsoids forms an infinite dimensional manifold with coordinate spaces

isomorphic to R? x ((0,1) smooth S,

Frame-to-Ellipsoid Transformation A frame-to-ellipsoid transformation
maps a spatial frame into a spatial ellipsoid with corresponding frame and ellipsoid
axes parallel and with frame origin at a fixed point with respect to the ellipsoid. The
fixed point is located as an offset from the ellipsoid origin given by a linear combination
of principal axis vectors (unnormalized). The coefficients of the offset are assumed
to be given parameters of any manifold of frame-to-ellipsoid transforms. Given the
offset coordinates of frame origin, the set of frame-to-ellipsoid transformations is a 3-
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dimensional manifold. The default coordinate system has coordinates corresponding
to the first, second, and third principal axes of the ellipsoid.

Ellipsoid-to-Frame Transformation An ellipsoid-to-frame transformation
maps a spatial ellipsoid into a spatial frame such that corresponding ellipsoid and
frame axes are parallel and the frame origin is at a given offset from the centroid
of the ellipsoid. The offset from the centroid is given by a linear combination of
principal axis vectors (unnormalized). The coefficients of the offset are assumed to
be given parameters of any manifold of ellipsoid-to-frame transforms. Given the
offset coordinates of frame origin, the set of ellipsoid-to-frame transformations is a
0-dimensional manifold (a completely specified, projection-like mapping that projects
off the shape of the ellipsoid leaving only a frame).

Image Point An image point is a position in a sensor’s image. The set of all
image points is typically a 2-dimensional manifold.

Image Point n-Set An image point n-set is a set of n image points. The set
of all image point n-sets is typically a 2n-dimensional manifold.

Image Point n-Tuple An image point n-set is a tuple with n attributes map-
ping to image points. Usually, the attribute set will be {0,1,...,n—1}, but arbitrary
n-sets are allowed. The set of all image point n-tuples is typically a 2n-dimensional
manifold.

Image Line An image line is a straight line in a sensor’s image. The set of all
image lines is typically a 2-dimensional manifold.

Image Ray An image ray is a half line in a sensor’s image. The set of all image
rays is typically a 3-dimensional manifold.

Image Line Segment An image ray is a bounded line segment in a sensor’s
image. The set of all image rays is typically a 4-dimensional manifold.

Image Polygon An image polygon is a polygon in a sensor’s image. The set of
all image polygons with n vertices is typically a 2n-dimensional manifold.

Image Triangle An image triangle is an image polygon with three sides. The
set of all image triangles is typically a 6-dimensional manifold.
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Image Quadrilateral An image quadrilateral is an image polygon with three
sides. The set of all image quadrilaterals is typically an 8-dimensional manifold.

Image Ellipse An image ellipse is an ellipse in a sensor’s image. The set of all
image ellipses is typically a 5-dimensional manifold.

Sensor A sensor as a function from the product of time, sensor exterior orienta-
tion, sensor interior orientation, and scene to an image or a set of features extracted
from an image. A sensor transform is the Curry of a sensor with time, and exte-
rior /interior orientations.

Sensor Exterior Orientation For a given collection, the sensor exterior ori-
entation is the orientation of a physical sensor at midpoint of the sensing interval.
The set of sensor exterior orientations is a 6-dimensional manifold.

Sensor Exterior Orientation Trajectory For a given collection, the sensor
exterior orientation trajectory is the orientation of a physical sensor throughout
the sensing interval. The set of sensor exterior orientations is an infinite dimensional
manifold with coordinate spaces isomorphic to (0, 1) smooth RS, By assuming a param-
eterized functional form for the trajectory, the dimensionality of the set of exterior
orientations can be made finite.

Sensor Interior Orientation A sensor interior orientation is the projection
of spatial location relative to the sensor exterior orientation into image location at
the midpoint of the sensing interval. In camera photography, it is sometimes assumed
that sensor interior orientation is fixed for a particular camera and the set of sensor
orientations is a 4-dimensional manifold (focal length, rotation, and two translations).
For non-camera sensors, the interior orientation may vary between collections and
depend on additional parameters.

Sensor Interior Orientation Trajectory A sensor interior orientation is
the projection of spatial location relative to the sensor exterior orientation into image
location throughout the sensing interval. The dimensionality of the set of all sensor
interior orientation trajectories can be finite or infinite, depending on the assumed
parameterization.

Orthographic Projection An orthographic projection is a particular sensor
interior orientation. Given a sensor exterior orientation, the set of all orthographic
projections is a manifold of dimensional 4 or less. The 4 degrees of freedom (some
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of which may be considered fixed) involve two translations and two scalings. An
orthographic camera model might reduce degrees of freedom to three by assuming
the two scalings are equal. For a given camera, it may be useful to assume that
scalings are known exactly.

Perspective Projection A perspective projection is a particular sensor inte-
rior orientation. Given a sensor exterior orientation, the set of all perspective pro-
Jections is a manifold of dimensional 4 or less. The 4 degrees of freedom (some of
which may be considered fixed) involve two translations, two scalings (or a directional
scaling and a focal length). A pinhole camera model might select out three degrees
of freedom to model (two translations and focal length). For a given camera, it may
be useful to assume that focal length and scaling are known exactly.

Orthographic SAR Projection An orthographic SAR projection is a par-
ticular sensor interior orientation. Given a sensor exterior orientation trajectory (in-
cluding velocity vector), the set of all orthographic SAR projections is a manifold of
dimensional 4 or less. The 4 degrees of freedom (some of which may be considered
fixed) involve two translations and two scalings. For SAR, the scalings may often be
assumed to be known exactly.

Cylindrical SAR Projection A cylindrical SAR projection is a particular
sensor interior orientation. Given a sensor exterior orientation trajectory (including
velocity vector), the set of all cylindrical SAR projections is a manifold of dimensional
4 or less. The 4 degrees of freedom (some of which may be considered fixed) involve
two translations and two scalings. For SAR, the scalings may often be assumed to be
known exactly.

Swept Perspective Projection A Swept Perspective Projection is a partic-
ular sensor interior orientation. Given a sensor exterior orientation trajectory, the set
swept perspective projections is a manifold of dimension 3 or less. The 3 degrees of
freedom involve two translations and one scaling (or focal length). For a given sensor,
it may be useful to assume that focal length (or equivalent scaling) is known exactly.

Ellipsoid to Extreme Value Transformation The ellipsoid to extreme
value transformation maps an ellipsoid and projection to extreme points on the
projected ellipse. There is only one such mapping.

Image Translation Given an image, an image translation is a translation of
all image points with respect to the image axes. For a given image, the set of image
translations forms a 2-dimensional manifold.
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Image Rotation Given an image and center of rotation, an image rotation is
a rotation of all image points about the center. For a given image and center, the set
of image rotations forms a 1-dimensional manifold.

Image Rigid Motion An image rigid motion is a composition of an image
translation and image rotation. The set of image rigid motions forms a 3-dimensional
manifold.

Image Directional Scaling An image directional scaling scaling in one direc-
tion of all spatial points with the expansion centered at the origin of the image. For
a given image, the set of image directional scalings forms a 2-dimensional manifold.

Image Linear Transformation An image linear transformation is a com-
position of an image rotation and directional scalings, all defined with respect to a
common origin. For a given origin (in a given image), the set of image linear trans-
formations forms a 4-dimensional manifold.

Image Affine Transformation An image affine transformation is a compo-
sition of an image linear transformation and image translation. For a given image,
the set of image affine transformations forms a 6-dimensional manifold.

Sun Centroid The sun centroid is the spatial point (0-dimensional) of the
centroid of the sun.

Earth Centroid The earth centroid is the spatial point (0-dimensional) of the
centroid of the sun.

Earth Orbit An earth orbit is the trajectory of a free falling object. The set of
all earth orbits forms a 6-dimensional manifold.

Image Polynomial Warping An image polynomial warping is a polynomial
image-to-image transformation. The dimension of the manifold of warpings is the
terms in the polynomial representation of the warps.
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L0 Vision Envi Report _Overvi

This report presents the functional specifications and top-level constructs of the
core design of an image understanding (IU) application development environment.
It also addresses system engineering issues in applying the environment to develop
workstations specialized for terrain analysis and medical applications. The
environment build has also been started this year.

In addition to designing and building this nearterm environment, Advanced Decision
Systems (ADS) and Georgia Institute of Technology (GT) have actively participated in
the IU community's design of a DARPA-ISTO sponsored, portable IU software
environment. This environment is intended to facilitate the transfer of IU
community technology into industrial, military, and commercial applications. GT and
ADS headed the design committee on knowledge representation in the preliminary
design effort from 5/90 through 9/90, and are currently a part of an independent
design team in the continuing design effort. :

The core environment presented in this report provides tools to leverage the
development of IU applications and to facilitate transfer of IU and reasoning
technology from its origins in research laboratories into IU applications. The core
environment provides both a development platform and reusable components
including a library of image processing and IU routines and data structures, and an
integrated set of higher-level reasoning capabilities such as bayesian networks and
logic engines. This layered software evnvironment concept is pictured in
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Figure 1: IU Application Development Environment Concept




This program is focused on the design and development of the core objects necessary
for the foundataion of the environment. These correspond to the shaded boxes in
Figure 1. The primary accomplishments of the project so far include

« Creation of a functional specification and top level design for an IU software
environment integrating model-based reasoning, image processing, automated
inference and hypermedia capability,

* Development of an IU environment class structure,

* Implementation of a partial object hierarchy, including build of a basic set of
user interface and imagery manipulation classes, extension of image objects to
include arbitrary gray level polygons, graphical interaction with remote
databases, and Bayes net objects integrated with feature extraction capabilities,

. Providing a system engineering analysis of tasks and requirements for
diverse IU applications and distilled a common core of IU workstation
requirements, and

«  Identifying and integrating key public domain software to provide image
processing and user interface capabilities.

The environment design is an object oriented structure built on the C++
programming language. The design describes object representations that are used
for the different classes of objects in the environment. Object representations are
designed to provide a direct and wuseful interface to environment capabilities and
programming constructs. The report also provides discussions of user interface, IU
routines, inference, database and other capabilities, and how these facilities are
integrated with the object representations.

The goal of the object oriented development approach is to build C++ objects to
support interpretation of spatial and temporal data. This is primarily targeted for IU
applications, though the techniques are applicable to other applications where
reasoning about complex data is involved. C++ was chosen because it is a widely used,
efficient, object-oriented extension of C, that facilitates the integration of public
domain code, commercial programs and hardware devices.

The core set of C++ objects serves as a foundation for the representation of spatial,
temporal and symbolic entities central to application development of IU and decision-
aiding systems. It is intended that application developers will extend the object
classes to create objects customized for their application.

The typical application IU system requires signal and/or image processing, symbolic
reasoning, and inferencing capability, an interactive user interface for inspecting
and manipulating the processing results, and an associated database for storing the
original data and the derived results. Application developers require the following
basic capabilities in their development environment:

* Objects that represent spatial/temporal data and models
. Objects that represent reasoning/inference knowledge
* Interactive display capability

* Remote storage and retrieval capability




The application developer can extend the baseline of objects and methods as required
by their particular application. These objects promote the interoperability of
higher-level C++ modules that conform to them. Figure 2 shows the relationships
between these environment concepts.
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Figure 2: Vision Environment Architecture

The remainder of this document presents our design of these C++ objects and their
associated class hierarchy. The hardware and software environment assumptions are
described in Section 2. Section 3 describes the core spatio-temporal object classes,
section 4 describes user interface objects and methods, and section 5 discusses
database classes. Together, these objects comprise the major functional components
of the design. Section 6 shows the top-level set of code libraries. Code libraries can
include objects, but much of a code library contains procedural routines for doing
various tasks. These are mostly intended to be wrapped as methods for core objects,
although it is possible for the application programmer to use them in traditional
programming paradigms, and in novel uses such as functions for concatenation
through mapping function wrappers (section 3.4.1.2). Section 7 presents key
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implementation issues that are considered in the design, including our approach to
access of external databases, and the addition of code (sub-)libraries.

Terrain analysis and medical IU applications are presented in section 8. Terrain
feature extraction from imagery and tissue segmentation in radiographs are
analyzed to distill a common core of functionality required in the IU environment.
This core provides the reusable infrastructure of the IU environment. Initial results
are shown, including the re-implementation in the C++ environment of a Lisp/C
program that performed model-based segmentation of hand radiographs using
Bayesian inference for accrual of feature evidence.

Appendix A lists the core IU object class structure. Appendix B lists public domain
image processing software packages that were considered for integration into the
environment.




2.0 IU_Envi w I | Capabiliti

Any IU environment aspires to support or possess all of the following goals
and attributes.

« availability of algorithms
« execution efficiency

» interoperability

» verifiability

» portability

» extensibility

* coding efficiency

« function/data composability
* customizability

Efforts on other IU research and technology transfer environments [Quam,
84, KBVision, 87, Lawton and McConnell, 88, Lawton and Levitt, 89, Waltzman,
90] suggest that the first five goals are of primary importance for
environments aimed at development of robust IU applications using well-
understood IU technologies, i.e. technology transfer, while the second four are
goals associated with rapid prototyping efforts common in IU research and
innovative development of IU technology. This effort is focused at the goals
that foster technology transfer.

In the following, we summarize hardware and software choices for a
nearterm system build, then describe the fundamental philosophies and
techniques for environmental software development. The third subsection
presents results of programming instances designed to develop, test and
demonstrate applications of the environmental constructs.

2.1 Workstation Hardware and Software Choices

Because of the bias towards technology transfer, and the desire to produce
this environment within two years, environment component choices have
largely been driven by current availability and prevalence of use of hardware
and software options. Another driving factor was that as much as possible of
the environment should be public domain, so that source code can be provided
at minimal cost.

The basic development and user system is a Sun 3, 4 or Sparc workstation
with a minimum of 12 megabytes core memory, keyboard and mouse, a color
display and at least 300MB magnetic or read/write optical disk. A Vitek image
processing acceleration board is under consideration for inclusion in the
environment.

The software development environment is the Berkeley Unix 4.2 operating
system on a Sun workstation, though compatibility to other Unix
implementations and other workstations is maintained where reasonable. We
have chosen C++ as the programming language. This choice is based largely on
its efficiency, its relatively good compatiblity with C, and its nearterm
widespread acceptance in the technology transfer community, i.e. the non-
academic IU application development community. We have chosen the Free




Software Foundation's Gnu Compiler over AT&T's 2.0 C++ compiler for two
reasons. The first is that the Gnu compiler generates faster, more efficient
code because it is a true compiler and not just a preprocessor to a C compiler.
The other reason is the availability of the compiler source code makes it
portable to forseeable future (Unix) platforms.

X Windows is used for managing displays. The InterViews toolkit from
Stanford provides a C++ interface to the X Windows package. IDraw, another
Stanford product, provides the interactive graphic window interaction.
Khorus, a public domain image processing library from the University of New
Mexico, provides both the standard set of image processing functions as well as
2D plotting capabilities. Other public domain software packages being
integrated in the basic environment include the CLIPS logic engine and rule-
base package, the NCSA 3d display routines, and several neural net packages.

2.2 Core Spatial and Temporal Class Hierarchy

The class hierarchy is based on the structures developed in PowerVision
and View [McConnell et. al.,, 88, Edelson et.al,, 88]. In particular, the basic
hierarchy of spatial classes and the concepts of transforms, function
concatenation, virtual function wrappers, and programmable database-like
search for perceptual grouping were all present in the original PowerVision
implementation.

The current design has made strides in uniformity of these structures,
cleaned up the relationship between objects and their display methods by
associating display methods to the display objects (e.g. windows) rather than
the source objects (e.g. a polygon), and has added class structures for
coordinates. This design creates fundamental links between the geometric
structure implied by coordinates and the programmability of search for
perceptual grouping, as well as the linking together of lower dimensional
spatial structures to form higher dimensional structures.

The core objects are organized into four general classes: scalars,
collections, containers and coordinates. The scalars are the standard numerics
and symbols of C++. Collections are general groupings of objects including
arrays, streams, and graphs. Containers are groupings of objects that
necessarily have an implied dimensionality and corresponding coordinate
systems and imbedding spaces. Containers are inherently spatial: images,
curves, solids, voxels, polygons, etc. Coordinates are objects that represent
coordinate systems. Local coordinates are objects that are necessarily included
within other objects (including other coordinates), while global coordinates
can be disembodied.

Containers are designed to wrap around collections, and embed them in a
coordinate system. Loosely speaking, we think of the semantic objects in IU
systems, such as images, surfaces and volumes, as collections of values
associated with coordinate systems. The grouping together in a systematic way
of collections with coordinates forms containers. An array of integers is a
collection. An array of integers associated with coordinates indicating the
context of the array in pixels and centimeters is a container that is of the class
Image. Figure 3 shows how containers, coordinates and collections relate to
each other, and how they fit into an overall system.

Containers necessarily have coordinate objects and are closely tied to the
user interface. The coordinate systems of the containers can map into the
display coordinate systems. The display window itself is represented as a
container. The necessary projections, translations, rotations, and scaling are




implemented by "virtual" containers that wrap around previously instantiated
containers and convert them into the appropriately appearing object.

Collections do not have associated coordinate objects, although they can
have indices, such as indexes for an array. Collections are closely tied to the
underlying devices. For example, a collection can be made to correspond to a
device such as an image scanner. The scanned image becomes an array (one
representation of a collection). Efficient access, traversal and transformations
are built as methods on collections. Another example is a neighborhood
operation like convolution. It can be realized as a collection of data and a
method that manages buffers to create fast virtual memory access to the data
in the collection.

Tranforms are procedures that operate on containers, coordinates and
collections and produce containers, coordinates and collections as output.
Although it is possible to represent transforms as containers, providing a
pleasing uniformity of data types, it can be semantically confusing to the user.
Because technology transfer is a fundamental goal, we have erred on the side
of clarity rather than uniformity. So an image is called an image, for example,
instead of a function that represents a 2d surface in 3space. We intend to
overload class names to permit users both views of appropriate objects.

Where it is not confusing, transforms are represented as overloaded
constructors of the class of their output objects. For example, a histogram is a
constructor method for the one-dimensional signal that is the output of the
histogram transform on an image.

When possible, transforms are defined on containers but implemented on
the (coordinate-free) collections to maximize reusability. For example, a one-
dimensional smoothing filter can be implemented on an array, then be usable
on any linear collection of data, such as an image row, a curve in 3 space, or a
specific traversal of the edges of a solid. So the filter can be represented at the
more abstract level of the container hierarchy as a method on a curveNd (i.e. a
one-dimensional curve in N space), enabling polymorphism.

In section three, collection, coordinate and container objects are described
in detail. There is also a description of how containers and collection objects
are efficiently traversed, accessed and searched.

2.3 Current Environment Capabilities

The current environment status represents five months of design and
three months of implementation on a 27 month effort. The Khorus image
processing package has just become available as of the writing of this report
and is not yet integrated in the environment Therefore, implementation
results focus on basic user interface and database capabilities.

InterViews and IDraw are public domain object oriented user interface
toolkits built on top of X Windows. To date, ADS has extended the graphical
object hierarchy of InterViews and IDraw in two ways: the addition of images
and of Bayes nets.

Within IDraw, images are first class objects. The user can put an image
object into the drawing by clicking with the mouse and pulling out a rubber
rectangle to define the outline of the image. The system presents the user with
a menu of files, and when the image file has been chosen, inserts the image
into the designated rectangle in the drawing, clipping the image if necessary.

Once an image object is defined and displayed, the user can perform a
variety of drawing operations on it, as with any drawing object. Images can be
moved, scaled, stretched in width or height, or rotated. Arbitrary image




warping is currently being implemented. In addition the user can draw any
kind of graphical object on top of the image, and then group the object with
the image, allowing drawing operations to be performed on both objects
simultaneously. For example, the user can draw a colored polygon over a
region of interest on an image, then group the polygon with the image into a
composite object, then scale and rotate the composite object. The polygon still
covers the same area of interest on the image. These capabilites are shown in
figure 4. (To save space, some photos have been cropped so that the full
computer screen is not shown.)

Rather than detailing each additional capability, we show our current state
of implementation through two interactive processing scenarios. They
demonstrate the benefits of an integrated object hierarchy, the use of images
as first class objects, uniform representation of display and interactive object
manipulation, and seamless access to remote processes.

The first application is diagnosis of arthritis from evidence extracted from
a hand xray pictured in figure 5. Nodes and links are included as graphical
objects. Graphically accessible methods are associated to form, in this example,
a Bayes net object. Evidence can be acquired from images by measurement,
and the evidence propagated through the Bayes net. Probabilities can be
graphically inspected. For example, given a Bayes net that draws inferences
about a disease condition of arthritic hands called periarticular
demineralization, it is possible to take measurements on an xray of a hand in
order to obtain evidence for the Bayesian network.

As illustrated in figure 5, the user loads the xray as an image object, draws a
line down the middle of one of the finger bones (phalanges) and asks for a plot
of the intensity values under the line by selecting "Profile" from a menu. The
plot is shown in a window. A measure is taken of the relative density between
the ends of the phalanx and the average density along the axis. This measure is
added to the Bayes net as evidence by selecting the image, line and relevant
Bayes node and selecting "Add Evidence” from the list of Bayes net menu
options. The impact of the evidence at any point in the net can be seen by
selecting the desired node and the menu choice "Show Belief". It is displayed as
a probability histogram over the possible hypotheses at the node. In figure 5
these hypotheses are "demineralization" and "normal".

The second application scenario involves interactively querying a digital
terrain database stored in Sybase. Figure 6 shows seamless interaction with an
external process through a graphical interface. The user brings in an image
of a map that is registered with the digital database. A region of interest is
selected by drawing an ellipse on the map. Selecting the appropriate terrain
layers and the "Retrieve" option from menus, a message is sent to Sybase,
generating an SQL query. In this case, the database is populated with data on
offshore oil wells, so a popup window of the wells in the region is displayed
when the query results are returned.
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The core objects are high-level data structures in the technology domains of interest:
image/signal interpretation, model-based reasoning, and hypermedia. The core
objects are inherently hierarchical, with objects that decompose into member
objects, that decompose into further objects, until the inner-most scalar objects, or
values, are obtained. One of the advantages of the hierarchical representation is that
it takes advantage of the (multiple) inheritance of attributes and methods that is built
into C++.

The core objects are organized into four general classes: scalars, collections,
containers and coordinates. The scalars are the standard numerics and symbols of
C++. Collections are general groupings of objects: arrays, streams, graphs. Containers
are groupings of objects that necessarily have an implied dimensionality and
corresponding coordinate systems and imbedding spaces. Containers are inherently
spatial: images, curves, solids, voxels, polygons, etc. Coordinates are objects that
represent coordinate systems. Local coordinates are objects that are necessarily
included within other objects (including other coordinates), while global coordinates
can be disembodied.

Containers are designed to wrap around collections, and embed them in a coordinate
system. Collections and coordinates are used in various ways to build containers.
Figure 3 shows how containers, coordinates and collections relate to each other, and
how they fit into an overall system.
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Figure 3: Core Object Relationships
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Containers necessarily have coordinate objects and are closely tied to the user
interface. The coordinate systems of the containers can map into the display
coordinate systems. The display window itself can be represented as a container. The
necessary projections, translations, rotations, and scaling are implemented by
"virtual" containers that wrap around previously instantiated containers and
convert them into the appropriately appearing object.

Collections do not have associated coordinate objects, although they can have indices,
such as indexes for an array. Collections are closely tied to the underlying devices.
For example, a collection can be made to correspond to a device such as an image
scanner. The scanned image becomes an array (one representation of a collection).
Efficient access, traversal and transformations are built as methods on collections.
Another example is a neighborhood operation like convolution that can be realized
as a collection of data and a method that manages buffers to create fast virtual
memory access to the data in the collection.

Tranforms are procedures that operate on containers, coordinates and collections and
produce containers, coordinates and collections as output. Where it is not confusing,
transforms are represented as overloaded constructors of the class of their output
objects. For example, a histogram is a cosntructor method for ValuedCurveld that is
the output of the histogram transform on an image. Where possible, transforms are
defined on containers but implemented on the (coordinate-free) collections to
maximize reusability. For example, a one-dimensional smoothing filter can be
implemented on an array, then be usable on any linear collection of data, such as an
image row, a curve in 3 space, or a specific traversal of the edges of a solid. So the
filter can be represented at the more abstract level of the container hierarchy as a
method on a curveNd (i.e. a 1 dimensional curve in N space), enabling polymorphism.

The next three subsections describe the collection, coordinate and container objects
in detail. This is followed by a description of how containers and collection objects
are efficiently traversed, accessed.and searched.

3.1 Collection Objects

Three classes of collection objects are planned: Stream, Graph, and Array. They can
be characterized by the style of traversing and accessing the collection. Streams are
traversed in a sequential manner, where the next access is restricted to the neighbor
in a single forward direction. Graphs are traversed in a linked manner, where the
next access is restricted to nearest neighbors in any direction. Arrays are traversed
in a random manner, where the next access is unrestricted. IS-A hierarchy of
collections in Figure 7.

Collection
I I I
Array Stream Graph
] | | 1 Tree
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List

Figure 7: Collection Objects
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3.1.1 Collection Classes

Any collection can group any set of core objects. Arrays can collect other arrays, or
streams, or graphs, or scalar objects. Specific subclasses and/or methods are supplied
for optimizing homogeneous sets of scalar objects.

The collection class hierarchy can be extended to wrap a stream, graph, or array
around external sources. A character stream can be wrapped around a serial port. An
array can be wrapped around a frame buffer. A graph can be wrapped around a
Connection Machine or Transputer topology.

3.1.1.1 Streams

Streams are inherently linear collections. A series of objects is followed by an end-
of-stream object.  Higher dimensional streams are represented as nested streams. A
buffered stream is supported to speed access of stream objects.

3.1.1.2 Graphs

Graphs are the general case of a linked data structure. A tree is a subclass of graph,
and a list is a subclass of tree. This class hierarchy allows lists and trees to be
manipulated by graph traversing routines, e.g.,"WalkDepthFirst".  Graphs can store
heterogeneous collections of objects. Graphs are implemented with separate node and
arc objects. At this time we do not plan to support special subclasses for specific types

3.1.1.3 Arrays
Arrays are randomly-accessible object collections. The most general array is a linear
collection of objects. Subclasses are defined that allow this linear collection of objects
to be indexed with 2, 3, or N indices.

3.1.2 Collection Methods

The basic methods for a collection are as follows:

constructors -creation and conversion routines

destructors -memory/process/device deallocation routines
printers -ASCII printing routines

traversers -universal location generation routines
searchers -selective location generation routines
accessors -value access routines

"Constructors" allocate memory for a given object, then initialize this memory as
required. This includes initializing the mechanisms for storage/retrieval of data to
and from arbitrary sources (i.e. disk, display, digitizers, network, video disk).

"Destructors" deallocate memory, terminate, close and/or reset processes, devices and
mechanisms as required.

"Printers" generate ASCII formatted representations of an object, both pretty-printed
concise representations and full dumps.
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"Traversers" are methods for traversing the object, visiting each member object or
element in turn. Each traversal of an object has an associated current location.
Traversers accept a function pointer argument and apply the function at (a
neighborhood of) each location.

"Searchers” are incremental, partial traversal methods. A search routine operates at
the current location and chooses which location(s) to visit next., A search routine
accepts two function pointers, applying one to the current location (neighborhood)
and the other to choose the next location(s).

"Accessors" are methods for accessing the member object stored at the current
location in the collection object. Access can be by value, or by reference to allow for
overwriting.

3.2 Container Objects

Container objects represent an S-dimensional containment of objects in R-space.

Container

Point Curve Surface Solid HyperSolid
R=1 Point1d Curveild
R=2 Point2d Curve2d Surface2d
R=3 Point3d Curve3d Surface3d Solid3d
R=n PointNd CurveNd SurfaceNd SolidNd HyperSolidNd
$=0 S=1 S=2 =3 S=n

This is only the top of the container class hierarchy. Additional subclasses are
derived so that the leaf node classes of the hierarchy are realizations of more
familiar spatio-temporal data structures and procedures. A signal is subclass of a one-
dimensional container in 1-space. An image is a subclass of a two-dimensional
container in 2-space. A volumetric representation is a three-dimensional container
in 3-space. Constraints for a linear programming problem can be viewed as an N-
dimensional container in M-space.

The container subclasses are effectively parameterized by the dimensionality of the
container's topology, and the dimensions of the imbedding space. A 2d curve is a one-
dimensional container in 2-space. A 3d curve is a one-dimensional container in 3-
space. A polygonal region is a two-dimensional container in 2-space. A polygon3d is a
two-dimensional container in 3-space. A terrain elevation map is a two-dimensional
valued container in 2-space.

Specific classes of container are represented in multiple ways. For example, a three-
dimensional container in 3-space is a solid, and a solid can be represented
functionally (X*2 + YA2 + ZA2 <= 1), volumetrically (via voxels or octtree), or by a
surface model.

The cross-product of the S-dimensionality of the containers and the R-dimensionality
of the embedding space is represented by a class hierarchy where the top-level
branching is container dimensionality and the lower-level branching is embedded




space dimensionality. Point, Curve, Surface, Solid, and HyperSolid are the
superclasses, and their subclasses correspond to the space the container is in.

To achieve efficiency, 0d, 1d, 2d, and 3d containers are implemented as special-cases,
and Nd containers are handled in a general fashion. In the same manner, containers
embedded in 1d, 2d, and 3d spaces are implemented as special cases, and embedding in
Nd is handled in a general fashion. Beneath each branch of the container hierarchy
are three subclasses that reflect increasingly general ways of representing a
container:

1- Constant Containers
2- Valued Containers

3- Connected Containers
4- Aggregate Containers

Constant containers describe the shape of a container without representing its
values , or "contents". The shape is defined to be its geometric representation in
Nspace, without values necessarily being defined at locations of the shape. Because a
shape is geometric, it usually has a boundary that we call its "shape boundary” to
distinguish it from other uses of the term. For example, a solid cylinder in 3space has
a solid cylinder as its shape, and a hollow cylinder as its boundary shape.

We can represent a force field acting on the solid cylinder by associating the
appropriate local magnitude and direction of the force field with each point of the
shape. This is an instance of a valued container. Valued containers have a shape
description and a content mechanism, whereby values such as scalars or more
complex objects can be associated or stored with each shape location.

Connected containers group other containers, relating them with a series of
coordinate transforms or other relations such as adjacency or attachment, and
merging them into a single connected entity. A CAD model of a single car built from
surface facets is a connected container. A smoothing pyramid is a connected
container, where image objects are related (connected) by the order of the
smoothing and sub-sampling operations that created them.

Aggregate containers group a disjoint set of containers into a single entity. The set of
CAD models of all cars manufactured at a particular plant is an aggregate container.

3.2.1 Container Classes
3.2.1.1 Point
Point has four subclasses, Pointld, Point2d, Point3d, and PointNd. Each represents a

single location, without length, area, or volume, in the particular space of that
dimension. For example, a Point2d is a point in 2 space.

3.2.1.2 Curve

Curve has four subclasses: Curveld, Curve2d, Curve3d, and CurveNd. Curveld is a
standard, one dimensional signal.

"Walk_locations” is the general traversing mechanism for curves. It walks down
every pixel (voxel) that lie on the curve's paths. "Walk_vertices" and "walk_edges"
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are supported as well for curves that are represented as collections of vertices or
edges.

3.2.1.3 Surface

Surface has three subclasses: Surface2d, Surface3d, and SurfaceNd. A one-
dimensional surface is not necessary. Surface2d represents images as well as the 2d
regions used in 2D modeling and 2D graphics.

The traversing mechanisms for surfaces (and solids) are grouped into two categories:

1- shape boundary traversal
2- shape traversal

Only the shape traversals are defined as methods on the surface object. The shape
boundary traversals are available as methods of the boundary object (a curve) that
surrounds the surface object. The methods concerned with traversing the shape of a
surface are:

walk_locations traverse internal points of surface

walk_vertices traverse graph of surface regions where vertices are
nodes

walk_edges traverse graph of surface regions where edges are nodes

walk_faces traverse graph of surface regions where faces are nodes

walk_segments traverse series of straight-line segments that make up

surface regions

Specialized traversals are supported based on a particular underlying
implementation of a container. For example, a run-length encoded container has a
method of traversing by run-lists.

3.2.1.4  Solid

Solid has one subclass, called Solid3d for conformity. Lower dimensional solids are not
necessary. SolidNd describes shapes in higher dimensions that have only 3d volume,
and no higher dimensional "mass". Solid3d supports volumetric models, surface
models, and functional models of 3d shapes.

To traverse the boundary of a solid, the shape boundary container(s) is extracted,
e.g., surface2d, and the traversing methods of that container are used. To traverse the
shape of a solid, these methods are applied:

walk_locations traverse internal points of solid

walk_vertices traverse graph of solid regions where vertices (junctions)
are nodes

walk_edges traverse graph of solid regions where edges of solid
regions are nodes

walk_faces traverse graph of the faces of solid regions

walk_solids traverse graph of solids regions

walk_segments traverse series of straight-line segments that make up

solid regions




3.2.1.5 HyperSolid
HyperSolid has one subclass, HyperSolidND. Lower dimensional hypersolids are
unnecessary. These can be represented with generalized volumetric techniques,
surface representation (collection of hyperplane constraints), and functional
representations.
Traverses are the same as for solids, generalized for N-dimensions.

3.2.2 Container Methods

The basic set of methods for a container are the following:

constructors  -creation and conversion routines

destructors -memory/process/device deallocation routines
printers -ASCII printing routines

traversers -universal location generation routines

searchers -selective location generation routines

accessors -value access routines

draw -draw representation of self in an Xwindow
display -add self to display list (see section 4.2)

inside -predicate to determine if point is inside boundary

"Constructors” are a primary mechanism for deriving new objects from old objects.
Constructors can be used to create aggregate objects by grouping other objects.
Constructors can wrap up other objects, and add functionality to transform them into
the new object. A particular class can have several different constructors, each
identified by its unique argument list. The arguments of a constructor can be by
reference or by value. When objects are passed by reference to a constructor, the
newly created object incorporates the old objects into itself. Its functionality then
depends on the state of its internal objects (or the objects it references).

"Destructors" deallocate memory associated with an object, and in turn invoke the
"destructors” of their constituent objects.

"Printers" generate various formatted ASCII output of the container. This is similar
to the collection "printers" with the addition of coordinate information.

"Traverser", "Searcher" and "Accessor" methods typically window through to an
underlying collection. The current position of a container traversal is in effect a
current position of the underlying collection traversal, and the mechanism for
accessing the data in the container is the same as the mechanism for accessing data
in the underlying container or collection.

"Display”, "Draw" and "Inside" are methods for realizing the user interface.

See section 4 for details. The display method queues the object for display in an
Xwindow by placing the object on the display list (see section 4.1) of the window.
Then the window object takes care of determining the necessary parameters to call
the object's draw method (see section 4.2). An object's draw method produces pixel
values that are a representation of itself and maps them into a window display, or any
container of type Surface2d. The inside method is used by the window object for each
object on the display list to determine if a particular mouse click has fallen within its
bounds (see section 4.4). Only containers and coordinates can be displayed in the 2D
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and 3D object windows, as coordinates are required to relate to the window display. It
is possible to display collections in structured text or graph browsing windows

3.23 Container Subclasses

The set of methods of each container class is the interface between objects of that
class and the external environment. In a formal sense, the specification of these
methods constitutes a contract with the external environment. The strong type
definitions of C++ help ensure the correct form of all interactions with the object.
When an object is passed as an argument to an arbitrary function, the set of methods
define how the function can manipulate the object. When an older object is supplied
as ‘an argument to a newer object's constructor, the object methods operating on the
older object present methods to the newer object that can then be exploited to realize
the newer objects capability.

If the older object is passed to the newer object by reference, the two objects become
related, and modifications to the older object are reflected in the functionality of the
newer object. If the older object is passed by value (or the newer object makes an
internal copy of the older object), then the two objects remain unrelated.

In general, the construction of containers involves the wrapping of a new container
around a set of older containers. The class of the new container defines what it is. The
classes recognized by the constructors define how it can be built. The information
embedded in the container is a mapping from the containers supplied as arguments
describing the functionality of the resultant new object.

The subclasses of the containers were designed with this in mind. The primary
description of any subclass is twofold:

1- description of the capability of the container it implements
2-  description of the set of containers (or collections) it can accept to construct
this capability

The resultant subclasses are prefixed with Constant, Valued, Connected and
Aggregate. Each subclass describes a basic approach to building containers. Constant
builds the shape of a Constant container. Valued borrows the shape of an existing
container and inserts new values.

Connected takes a set of containers and relations between them and groups them into
a single container. The set of relations must be "path-connected" in the sense that
given any two of the containers, A and B, there is a sequence of containers in the set
starting with A and ending with B, such that there is a relation specified between
any two containers that are adjacent in the sequence. For example, a CSG model of a
tank that had coordinate transforms and attachments specified between adjacent
primitive solids is a connected container.

Table 1 summarizes the possible ways of constructing these various containers from
other containers and collections.




Table 1: Constructor Arguments

Container Subclass Constructor Arguments

Constant Container 1) another container that represents the shape

2) an existing collection and corresponding
coordinate information

Valued Container 1) another container for the shape and an existing
collection for the values

2) another container for the shape and an existing
container for the wvalues

Connected Container 1) list of containers and relationships

Aggregate Container 1) list of containers

3.2.3.1 Constant Containers

Constant containers are descriptions of a region but do not describe the values
associated with points contained in the region. Typically, constant containers are
implemented as a representation of the shape of the container. These containers
represent a locus in some space. The boundary of the container can be traversed, the
insides of the container can be traversed, but no values can be retrieved. Constant
containers can be constructed from a lower-dimensional container that describes its
boundaries. Two-dimensional surfaces are bounded by a closed two-dimensional
curve.  Three-dimensional solids are bounded by a three-dimensional surface (which
is in turn bounded by a three-dimensional curve).

3.2.3.2 Valued Containers

Valued containers describe the region as well as provide a method for accessing the
values associated the region. The boundaries and insides of these containers can be
traversed, as with Constant containers, and values can be extracted at each location
in the traversal.

In general, valued, or "full", containers can be constructed by combining a Constant
container object with a collection that maps locations in the container to values. This
collection (an array, stream, or graph) can represent values inside the new
container, or be restricted to locations on the boundary.

This general mechanism can be overridden by specific full containers that rely on a
technique that entangles the boundary representation with the value
representation. In this case their constructors do not have other containers (or
collections) passed to them by reference.
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3.2.3.3 Connected Containers

Connected containers group other containers into a single entity. The generalized
composing mechanism relates objects by chaining them with a series of
relationships, such as coordinate transforms, in the appropriate space. 3d objects can
be chained with 3d rotations, scalings, and translations. 2d objects can be chained
with 2d rotations, scalings, and translations. Other grouping methods, such as
symbolic groupings of INSIDE-OF and ADJACENT are realized with subclasses of the
general composition class.

More explicitly, the set of relations passed to the connected container constructor
must be "path-connected" in the sense that given any two of the containers, A and B,
there is a sequence of containers in the set starting with A and ending with B, such
that there is a relation specified between any two containers that are adjacent in the
sequence. For example, a CSG model of a tank that had coordinate transforms and
attachments specified between adjacent primitive solids is a connected container.

The general composition mechanism can also be used to transform the local
coordinate systems of an existing container, by grouping it with a constant container
associated with a different coordinate system. Projecting a container into a
coordinate system with less dimensions is not handled by the connected container

mechanism, but is instead supported by the constructors of objects in those lesser
dimensions.

Constructors for connected containers take a list of older (sub) containers and
associated local-coordinate systems (implemented as coordinate objects, see section
3.3), and other relationships, such as attachment and adjacency, as by-reference
arguments. This list can include simpler containers in the same space, i.e. a
connected two-dimensional surface can accept two-dimensional curves, because they
are degenerate cases of two-dimensional surfaces.

3.3 Coordinate Objects

Coordinate objects represent coordinate systems. A coordinate has a corresponding
type that is one of cartesian, polar, cylindrical, spherical, quaternionic , or shape.
Shape means the coordinate system is defined in terms of distinguished points in a
container, like attachment points, or the ends of axes of sub-objects. A local
coordinate is necessarily contained in another object such as a container or another
coordinate. A disembodied coordinate is defined to be the subclass of global
coordinate. Coordinates have methods that act as transformations between other
coordinate systems. A coordinate records its transformations between other
coordinates, unless these transformations are explicitly deallocated.

3.3.1 Coordinate Classes

There are two subclasses: global and local. Local has a special subclass called base-
coordinate.

3.3.1.1 Global Coordinate

Global coordinates can occur disembodied, i.e. without being contained in or
referencing other objects. They can be transformed and copied by any coordinate
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constructor to mix in when constructing a local-coordinate defined for a container
or other global or local coordinate. This "places" the container in the global
coordinate system. The global coordinate remembers the containers that were
constructed with it.

3.3.1.2 Local Coordinate

A local-coordinate can represent the imbedding space of the container, or other ego-
centered coordinate systems. An object can have multiple local coordinates. Each
local coordinate that is constructed must have a transformation that represents it in
the coordinate system defined by the base coordinate.

3.3.1.2.1 Base Coordinate

The base coordinate is a distinguished local coordinate. It is defined to be the first
local-coordinate associated to a container or other coordinate. The base coordinate is
instantiated by the container contructor. It can be specified by the caller of the
contructor method. The base coordinate is guaranteed to have transforms associated
to all other local-coordinates of that container or coordinate. It is intended, although
not required, that the base-coordinate correspond to the natural traversal of an
associated collection of values. For example, a raster image is a Surface2d container
whose values are in an Array2d (collection). Its natural base coordinate is the
cartesian coordinate with origin at array index (0,0), one axis in the row direction
and another corresponding to columns. For a pyramid, a natural base coordinate is
similar, but includes a third axis in the multi-resolution direction.

3.3.2 Coordinate Methods

Coordinates all contain the following methods. Note that when local and global are
not explicitly called out, either applies. For example, the transform method can relate
locals to locals, locals to globals or globals to globals.

type - returns a mathematical type (e.g. cartesian) or
the type "shape".

origin - returns a point

dimensions - returns list of dimensions

units - returns list of named units per dimension

minextents - returns list of minimum extents per dimension

maxextents - returns list of maximum extents per dimension

convert - inputs a type that is not "shape" and creates

versions of its local-coordinates expressed in
that type (e.g. cartesian to polar conversion)

list-transforms - returns the list of transforms known between itself
and other coordinates
transform - inputs another coordinate with a known
transform to itself, and a third coordinate with a
known transform between it and the second
coordinate; returns a transform between itself and
the third coordinate.
propagate-transform - inputs a coordinate with known transform
between itself and the coordinate, and returns the
list of transforms between all its local-coordinates

and the input coordinate.
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34 Object Traversal and Search

From the wuser's point of view, containers get traversed or searched. From the
workstation environment's point of view, containers are pointers to collections that
get traversed or searched. Both traversal and search can be thought of as routines
consisting of the cyclic applications of three functions: move, access.and apply. In
the case of traversal every value in the underlying collections is necessarily visited,
so the function for moving, or choosing the next location(s) in a container's shape, is
known before traversal is invoked.

In search all locations/values are not necessarily visited. The move function must be
passed by reference to the search method. The apply function is invoked on the
appropriate neighborhood at each visited location for both traversal and search
methods.

Signal and image processing functions traverse their contents to enable extraction
of higher-level interpretations. These routines need to quickly iterate across their N-
dimensional data sources, with efficient access to a local neighborhood ranging in
size from 1 to M units in any dimension.

Traversal is intended to provide the support for a programming style whereby the
application developer codes the operation to be done at each point in the traversal,
and leave it up to some other mechanism to slide this operation around the container.
This requires two things: an underlying mechanism for efficient - traversing (tied to
an efficient accessing scheme) and a programmer interface.

Examples of underlying mechanisms are the tiling of imagery used in ADRIES, and
the sliding-window subsystem from the Honeywell Image Research Laboratory. Each
makes neighborhoods of pixels available to the programmer in an efficient manner.

34.1 Programming Traversal and Search

When a programmer is presented with an efficient source of neighborhood data, it is
convenient to string together a series of smaller functions to do the work of a more
complex function. However, the programmer is typically forced to write the complex
function out flat, inline in one function, to avoid the overhead of piping data
between functions. The IU workstation environment provides support to concatenate
existing low-level operations without incurring extra overhead.

This can be done by constructing a library of neighborhood operations that describe
what is done on one neighborhood, but contain no mechanism for iteration. Examples
are convolution kernels, median filtering, and basic arithmetic and logical
manipulations of Nd data. Neighborhood operations that maintain a state are
implemented in this model by saving the permanent state in static and/or global
variables for later retrieval.

This makes the process of writing more complex neighborhood operations into one of
concatenating the series of operations into a single neighborhood operation. A
specific neighborhood function is then inserted in the middle of a looping
mechanism that is capable of traversing the container, and supplying the
neighborhoods of data to the operator.
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There is a split here that needs to remain clear. The reusable neighborhood
operations are small code chunks that have no built-in looping mechanisms. An
application specific neighborhood operation takes a sequence of reusable
neighborhood operations, and wraps them up with a traversal or search mechanism.
To reuse that specific neighborhood operation means the body of the loop has to be
extracted and made into a stand-alone function. That effort is only desirable when
the function is to be reused; otherwise it leads to extra overhead from a layer of
function call. An example of convolution code is shown below. Convolution has a
neighborhood application function, and an outer loop that traverses a container.
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int ByteStream2d::convolve

(
ByteStream2d *outstream; // Output 2d stream of bytes
ByteArray2d *mask; // Convolution mask.

// Local variables
int mask_width = mask->width{();
int mask_height = mask->height ();
int dummy;

// Ensure input and output streams are rewound
this->rewind();
outstream->rewind () ;

// Create and fill neighborhood cache on input stream
// Boundary handling is done by the cache.
char **instream cache =
this->cache( mask_width, mask _height );

/* Load entire mask into its own cache */
float **mask cache =
mask->cache( mask_width, mask height );

// Loop until double end-of-stream
while( !instream->eos() )
{

// Loop until single end-of-stream (end of row)
while( !this->eos() )
{

int out_value = 0;

// Convolve mask with neighborhood
// and write result to output stream
for( int i=0; i<mask height; i++ )
for( int j=0; j<mask width; j++ )
out_value += *(* (mask_cache+j)+i) *
*(* (instream cache+j)+i);
outstream->next () = out value;
dummy = this->next () ;
}

// Set up for next row
dummy = this->next ();
}

// Return OK status
return O;

}




3.4.1.1 Neighborhood Cacheing

Object access is streamlined with a cacheing mechanism that makes a local
neighborhood available to the C++ program in an internal C++ data structure. The
mechanism is program-controlled, in that the program decides when to initialize it
and when to refresh its contents. Because the cache is represented as a standard C++
data structure, either an array or a nested array of pointers to arrays, the efficiency
of data access within the cache is identical to array-based data access.

A neighborhood cache is useful for representing windowing operations on imagery.
The input object is an image, the cache is an array of pointers to linear arrays; as the
window slides across the image, the cache is refreshed by updating the pointers.

For point transformations the cacheing mechanism is useful in order to reduce the
overhead of row access. The cache is defined to be a single array equal in length to
the image row, and it is refreshed after each row is processed. The processing of the
row is done with a tight for-loop, with entirely in-memory data access.

The convolution example above illustrates the use of neighborhood cacheing for
arbitrary convolution of imagery. Two caches are employed, one on the input image
stream, another on the 2D-array that defines the convolution mask.

3.4.1.2 Mapping Function Wrapper

The ability to compose functions without creating intermediate data structures yields
the ability to display the results of experiments with a minimum of typing on the
part of the programmer (e.g. not creating named functions as above) and with a
great saving of memory and memory management overhead. In Powervision (the
ADS vision development environment built in ZetaLisp on a Symbolics lisp machine),
functions created this way were called "pixel-mapping-functions". Because
individual objects know how to display themselves, the pixel-mapping-function
capability is re-created with a wrapper that says: compose the following functions
(passed by reference) on this input data, and add the display method for the result of
the last function at the end. Ordinarily, the final result is saved, because it is often
the input to a next stage of processing.

For example, to apply a convolution to only the pixels in an image defined by a mask,
a search method is applied to the image object, where the search method run length
encodes the mask and accesses the "on" pixels only. The search method is composed
with the convolution to feed only the relevant neighborhoods to the convolution
kernel.

Mapping functions are implemented by subclasses of their respective containers.
There are four basic types of mapping functions, and so four basic mapping function
class extensions: ~

1) coordinate transformation of container locations
2) look-up-table applied to container values

3) arbitrary expression applied to container values
4) arbitrary expression applied to container locations.
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3.4.2 Spatial Data File System

Two capabilities have been defined to support the traversal and access of spatial data
stored in containers: 1) an efficient file access mechanism, for retrieving data stored
on arbitrary devices, and 2) efficient indexing schemes for quickly locating data
stored within a container. In combination these are called the Spatial Data File
System.

Collection objects are supported on diverse sources of data: disks, frame buffers,
digitizers, optical disks, even virtual memory. Constructors set up and initialize access
to these devices, and subsequent use of the object's methods so that the underlying
access mechanism is transperant to the application developer. Destructors close
and/or reset device access as needed.

Device drivers simplify this transparency, by making all objects appear as a stream
of characters (or a buffered stream of characters). Furthermore, the model of a disk
device driver suffices for a large subset of devices that can be viewed as a contiguous
collection of characters coupled with a random seek mechanism.

The spatial data file system supports the I/O of spatial data to disk-like devices. The
spatial data file system differs from a normal Unix file-system in that it attempts to
optimize the access of large collections of 2d, 3d, or Nd data.

The ability to efficiently index into specific data stored within a larger collection is
required. Database indexing uses (multidimensional) trees (B-tree, kd-tree, quadtree,
octree, etc.) or hashing to isolate a particular item in a list.

For example, a collection of curves written to disk can be implemented in the
following manner:

1-  an array of bytes on disk is defined as the low level object

2- a tree index is computed that maps from the curve i.d. to the byte offset
within the file

3- an array of curves is defined that combines the array of bytes with the
curve-to-byte tree, and results in an array of efficiently accessible variable
length curves that (just happen to) reside on disk




4.0  User Interface

The user-interface supports the direct manipulation and inspection of all entities in
the vision environment through a windows-menu-and-mouse interface. The user
interface is based on X Windows, a network window system, and InterViews, a C++
package that defines basic X Windows objects. The user interface must be capable of
displaying a list of containers to an X window, and mapping mouse clicks to specific
objects in the display list. The following subsections present the display list object,
window types and addresses issues in imagery display and mouse protocol.

4.1 The Display List

The display list is an object that keeps track of what set of objects is currently being
displayed in a window. There is a single display list associated with each window. The
display list is implemented as a connected container of 2d surfaces. The connected
container groups two-dimensional points, curves, and surfaces, interrelating them
with coordinate transforms and other programmed relations. Each container stored
in the display list knows how to redisplay itself, and knows how to determine if a
given point is inside or outside its 2d shape boundary or whether a given rectangle
overlaps its shape boundary.

4.2 Windows
The window system supports overlapping windows, as well as neatly tiled windows,
useful for applications once they reach a certain level of maturity.
While in overlapping mode, each window can be resized, repositioned on the screen,
collapsed down to an icon, and expanded back to its original size and shape. When
overlapping mode is disabled (tiling mode), the size and shape of each window is
predetermined (or tightly controlled), and the opening and closing of windows is
directed by the application. Each window is associated with a display type that
governs the type of information that can be shown within the display region.
The supported window types include:

1. 2D Object Display Window-- images, lines, curves, 2D graphics

2. 3D Object Display Window-- volumes, surfaces, 3D graphics

3. 2D Plotting Window -- 2 axis: signal plotting, time series analysis,
statistics, measurement or feature spaces in two dimensions

4. 3D Plotting Window-- 3 axis: measurement or feature spaces in three
dimensions '

5. Directed Graph Browser Window
6. Structured Text Browser Window

7. Dialog Box Window
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The display of objects to windows is object-oriented, in that each entity within the
vision environment knows how to display (or present) itself to a window of a specific
type. The following subsections discuss each window type.

4.2.1 2D and 3D Object Display Windows

An object display window presents a collection of image-understanding objects to the
user, all registered to a single coordinate system with the display based on a single
viewing perspective in that coordinate system.

The coordinate system of a 2D object display is that of the base coordinate of the
primary image associated with the display. The typical viewing perspective of a 2D
object is such that the primary image is displayed at full resolution. If the window
size exceeds the primary image size, the remainder is filled.with a constant value If
the primary image size exceeds the window size, the image is clipped. From this
starting point, the viewing perspective can be adjusted to arbitrarily zoom and scroll
the display.

3D display involves projecting 3d objects onto a 2d space, then entering the resultant
container into the display list. This projection is done by the constructor routines of
the 2d classes. For example, a constructor for 2d curves is supported that accepts a 3d
curve and a set of coordinate transforms that describe the relationship of the 3d
object's coordinates to the screen of the desired 2d projection. The resultant 2d
container can transform surface orientation into intensity values of 2d surfaces.
Hidden surfaces are dealt with by this projection mechanism as well.

The coordinate system of a 3D object is centered around the origin of some primary
object associated with the display. The viewing perspective is based on the unit
screen at a unit distance from the viewers focal point. A default 3D viewing
perspective can be defined as a global coordinate object and placed at a distance from
the viewer where the bounding rectangle of the unit screen matches the bounding
rectangle of the object (padded with constant values to maintain aspect ratio)
projected onto it (i.e, it fills the screen). From this starting point, the unit screen can
be translated and rotated in 3-space to a new position that results in a new projection
of the 3D object onto the unit screen, and a new display. Fant's warp and perspective
algorithm is used for this method.

Each object in a 2D display is z-buffered to achieve an ordering from front to back,
allowing for the overlay of graphical objects on top of other graphical objects (or
images). This ordering also resolves which object responds when the cursor is
positioned on it and the mouse is clicked. Ordering in 3-space is dependent on the
viewing perspective, but for essentially 2D objects that lie on a 3D surface there can
be a concept of ordering with respect to a particular side of that surface.

Any object that can display itself with the proper dimensions can be added to the list
of objects displayed by a window. The following classes are supported for 2D: grey-
scale images, binary images, labeled images, lines, curves, polygons, and any fixed
projection of a 3D object to 2D space. Both volumetric and surface models are
supported for 3D object display. Hidden line removal and other surface rendering
techniques are supported as needed.

Color is required for drawing secondary objects on the face of primary objects, such
as lines and curves embedded in an image, or the vertices of a 3D object that lie on its
surface.
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There is a need for "snap-to" capability that associates the position of the cursor
when a mouse-button is clicked to the nearest reasonable object. This aids the user
in selecting objects of single pixel width.

4.2.2 Plotting Windows

Plotting windows share traits with object display windows. The main difference is
that they graphically present information that is inherently numeric, whereas
object displays graphically present information that is inherently pictoral. The
extent of each numeric dimension is presented to the user as an annotated axis,
divided by tic marks into numeric ranges. By, default the plot is scaled to fit within
the current window size.

2D plots consist of line plots, scatter plots (by dot and by character), and bar plots.
Grids to aid in viewing are optional. 3D plots consist of surface grid plots (with
hidden lines removed) or chunky bar plots.

In a similar fashion to object displays, any object that can present itself to the
plotting window as a collection of numbers of the proper dimension can be added to
the list of objects plotted by the window. The default ordering is FIFO, but can be
modified by the user.

4.2.3 Directed Graph Browser Window

Arbitrary directed graphs, trees, and lists can be used within the environment to
group together objects. The directed graph browser is provided as a general tool for
graphically inspecting these data structures, and editing their contents. In general,
the directed graph browser supports an arbitrary directed graph, but works just as
well on the simpler data structures of trees and lists. It automatically positions the
nodes within the window, drawing arrowed lines to show the relationship with other
nodes, and asks each node to display itself, either by icon or by name.

Navigation of the graph can be done by the user or under program control. An
advanced browsing feature is a miniature map of the entire graph, used to navigate
when the graph is too large to fit in the window.

Nodes in the graph can be selected by clicking left. A menu of possible node
operations is brought up by clicking middle, once the node has been selected.
Certain node operations require a target node that is then selected by the right
button after the first two operations.

The directed graph browser can be set up for read-only access of the directed graph,
or with read-write permission can be used for interactive editing of the structure.
Nodes can be created, deleted, and moved. In a similar fashion entire sub-graphs can
be created, deleted, and moved. The structure of created sub-graphs is based on a list
of default structures, or controlled by the program. Hierarchical graphs (nested)
may be supported as well.

4.2.4  Structured Text Browser and Dialog Box Windows
The input/output of text and numbers is done through structured text browsers. At

its simplest (initial capability), this is a text editor. At its most complex (eventual
capability), it is a text I/O window that automatically enforces a certain grammar,
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such as the legal relationships that can be entered into a semantic network, the
syntax of a programming language, or a database table structure.

Once again, as in the directed graph browser, text display in this window can be
either read-only or read-write. A read-only text display, augmented by certain
control buttons, is a dialog box.

Actions can be associated with the modification and/or selection of any text within
the window. By clicking on a word in a list of words, it is possible to bring up
another window with information pertaining to that item. This rudimentary
hypertext is wuseful for following a chain of related objects in the vision
environment.

The user interface is an easy to use hyper-text or hyper-media interface, built
around the data constructs necessary for IU: 1, 2, and 3D signals and structures, and
diverse networks and databases to contain them. To support IU further, links
between various displayed entities are arbitrarily complex transformations, instead
of simple pointers, to make for a flexible approach to prototyping applications. A
single plane in a 3D plot can be selected, and displayed in a 2D plot window. If the
new window is created by reference (versus by value, to borrow programming
language terms), a modification in the original 3D plot is passed on to the 2D plot.

4.3 Overlays and Sprite Objects

Most graphics that overlay images occupy a small area compared to the image size.
An example is the overlay of linear features, such as roads or rivers, on an image.
When the image is drawn, it is from one container object. Each window is associated
with a display type that governs the type of information that can be shown within
the display region. The linear features are assumed to be a second container object
with coordinates that overlap the image. The problem is to allow the user to select and
unselect the display of the graphic overlays without redrawing the whole screen just
to refresh the small area under the graphic overlays. The approach is to create a
third object that has the same container (i.e. “shape") information as the graphics,
but uses the values from the image collection. Refreshing the screen is accomplished
by requiring the appropriate set of graphic objects to refresh themselves. This
capability is called a "sprite" object in the object-oriented imagery display literature.

4.4 Visual Pointer

The initial pointer device is a three button mouse, because of the choice of Sun as the
initial hardware platform. A mouse is used to manipulate a cursor on the screen.
Action is taken when a particular mouse button is pressed. The action taken is a
function of which button is pressed, what window the cursor resides in (the top-most
window if there is overlap), and where in the window it resides. Standards are being
incrementally developed to govern the types of actions associated with each mouse
button. The cursor may change in size or shape to indicate change of state of any
particular application.

Each window comprises several mouse-sensitive areas within it. These areas may or
may not correspond to obvious graphical clues, such as a menu item, button, or
graphical object. For the most part the mouse-sensitive areas lie within the
bounding rectangle of the window, with the single exception of pop-up menus (or
detachable menus) that are attached to the borders of the window.
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Mouse selection is implemented by capturing a mouse click, and interrogating each
object in the display list in turn, to determine if the click fell upon it. The effective
area of the click is expanded to some minimal resolution (e.g., 8 by 8 pixels) prior to
perusing the display list. A mechanism is provided for determining all the objects
that overlap this expanded area.

4.5 Image Scrolling

A key problem is displaying large images or maps; much larger than one display
screen can show at a time. In addition, the user wants to be able to scroll around on
this image or map, and to zoom in to selected sections of the image or map.

The basic approach is to divide up the overall image into rectangles that can be
moved from disk to memory and from one place in memory to another in a very short
time (considerable less than a second). These image objects are a subclass of the
image class, called tiles, and have the smaller container class instances that
correspond to each of their parts. A slight overlap in tiles may be allowed to resolve
border problems. When the user elects to scroll the image, i.e. move mouse, the
pointer position is used to select the additional image tiles needed and to recover them
from disk. Latency is addressed by mating the default tile size to the minimum block
size for retreival and the bandwidth of the cpu to disk (or other storage) channel.
Note that it is assumed that the environment can find out the size of an image in
external storage. In that case, it can be tiled as it is read in and stored in the local
database for use during the working session.

4.6 Menus

Most windows in the vision environment have a region where fixed menu selections
are advertised, plus a region that displays the variable information displayed by this
type of window. Within the display region, the menus are a function of what object
is selected.
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2.0 _ Databases

A database provides for the management of many types of persistent data including
the objects being operated on, the functions in the function library and the versions
of each of these items. Management means keeping track of the items as well as
storing or saving them from one execution of the program to the next (persistence).
A single database (consisting of multiple files) is associated with each workstation.
Multiple workstations in a cooperative environment require either a shared database
or a distributed database approach (probably the latter).

This database accomplishes many different functions including:
1-  simple persistent storage of images, objects, functions and other data,
2- flexible conditional queries to retrieve or compute instances of objects,

3- structural ordering of the object instances to provide fast, efficient access to
the objects,

4- a consistent convention for accessing a variety of different objects with a
minimum of coding effort, and

5- extensibility to support group data sharing on different physical databases.

The database manager is organized in a client-server model and consists of two
components:

1-  The database interface (or client) provides the interface to the database from
any other programs. This interface is provided as methods that the other
objects may invoke. Such methods include: insert, delete, save, find, etc.

2- The database server manages the storage and access to items assigned to the
database including the allocation and deallocation of space. This includes
creation, documentation, modification, access, and deletion of user objects
(images, features, etc.) and programming objects (functions, documentation,
numbers, characters, etc.).

Databases traditionally provide a shared access that prevents two users from
interfering with each other when accessing the same object and provide a
transaction system to ensure the integrity of each interaction with the database.
These aspects of a database are not as important for the IU environment and are not
discussed further here.

5.1 General Database Approach
The approach to the database design is in two levels. These are:
1-  The basic level provides for the storage of objects, groups of objects and

indices as files for management by the operating system. These files can be
stored and read directly from the program or under interactive user control.




2- The next level provides interface to  database management systems from
commercial products. The current plan is to develop a generic SQL interface
for the class hierarchy. This allows interaction with standard relational
database system (e.g. Sybase, Ingress, Oracle). Interface to or new object
oriented databases (Ontologics' Ontos) is a future possibility. Hooks are
provided to build additional structures for efficient access, such as quadtrees.

The database is integrated into the core workstation software in several ways:

1-  The primary access to the database is through the C++ language. The user
(developer) takes advantage of the database through the core object
structure.

2-  Our approach to the database uses the strong typing feature of C++ by
allowing the database objects to be incorporated directly in the object
hierarchy transparently. That is, the objects are compiled directly into the
program (with strong type checking) and are stored in the database by
invoking the persistence attribute.

3- All imagery, imagery objects, functions, production rules, reasoning
structures, etc. are expected to be stored in the database and access through
the same C++ program interface

4- A set of user interface procedures that form a front end to the objects stored
in the database.are provided for the developer

5.2 Database Implementation

The Sybase relational database system provides the basic relational database
capability. An object oriented view of the database is provided by a set of object
oriented procedures used as a front end to the relational database and the objects are
stored using some object oriented structures build on top of Sybase.

5.3 Object Storage and Retrieval

Objects that are capable of being stored in the database are given the attribute
persistence (inherited from a high level object). When this attribute is turned on,
the object is guaranteed to be stored in the database for later access. It is up to the

application developer to assign the appropriate attributes to the object so that it may
be accessed properly.

This approach assumes that the structure of objects stored in the database is known to
the compiler; in fact, the object storage mechanism is compiled and linked with the
application program. It also assumes that the persistent objects have a standard set of
methods for storing, retrieving, inserting, ordering, etc. These methods constitute
the interface to the database and must be chosen carefully to allow replacement of
the database structure at a later date.

One function of the database is to provide a simple way to keep track of the images,
features and other objects in the system. Each object is assigned a set of
identification information, source, dates and data characteristics. This information is
stored along with the corresponding object. The database allows users to access and
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keep track of all images and to select subsets of these images according to various
selection criteria for viewing or processing.

The index or ordering information on objects in the database is provided by special
objects that have the appropriate structures. Any group of objects may be ordered
using this object type by creating an appropriate indexing object. These indexing
objects include: binary trees, quad trees, oct trees, hash tables, etc. The indexing
objects access the ordered objects by providing an offset into a table storing the data
for these objects.

Another function of the data base is to store information derived from the objects.
These are arbitrary sized objects and may be retrieved by a variety of attributes. The
attributes of these objects are defined by methods on the objects. These
methods/attributes may be precomputed and stored in some kind of indexing list or
they may be computed when the query is made.

5.4 Processing History

Another database function is to store the history of processing performed on the
various image objects. This capability is similar to the source code control system
used by software developers. The history system maintains a complete version of the
image object along with enough information to reconstruct any other versions of the
image object. The processing performed to extract any information (features, etc.) is
recorded so that it may be reconstructed if desired. This capability allows the user to
use the data from a previous step and to try alternative processing sequences to
arrive at new conclusions. All such processing paths are recorded.

The history management system records the sequence of operations that are
performed on each image. The original image (or image object object) is stored and
the commands with relevant parameters are recorded for each sequence of
operations.  This is sufficient to recreate the results of any processing sequence. In
addition, the intermediate results may be stored, if the user elects to do this.




5.0 Code Librari

Libraries that support model-based reasoning and signal/image interpretation are
built to manipulate the core objects described in section 3. The interface to each
function is composed of core objects as far as possible, and the simplest and most
general core object as possible to maximize reusability. For example, a two-
dimensional window-based transform is designed to operate on a stream of linear
arrays. Then any regular two-dimensional container, whether it is embedded in 2-, 3-
» or N-space, can be accessed as a stream of linear arrays, and piped into the
transform. The core objects support any reasonable data conversions, with priority
given to conversions that can be done by a "forgetting” mechanism (e.g. forgetting a
linear collection of integers was constructed as type 3d array).

Libraries are themselves a hierarchy of sub-libraries, allowing the incremental
inclusion of software packages into applications. The set of possible functions have
been grouped into five top-level categories:

Sensor and Image Processing Library
Model Library

Matching and Grouping Library
Interpretation Library

Reasoning Control.

Each library at this level corresponds to a processing stage and/or subsystem in an
IU or decision support system. The sensor and image processing library is a
collection of objects and routines that process data received from an external source,
emulating the interaction of sensors with the objects defined in the input data
and/or applying various filters and feature extraction. The model library consists of
objects and routines for modeling the world spatially, temporally, and in any other
relevant qualitative or quantitative domain. The matching library comprises
routines for matching a model-based prediction of the world to sensor-derived
evidence of the world.

The interpretation library is a collection of approaches for classifying objects that
have been isolated from sensor input and/or mechanisms for inferring decisions.
The reasoning control library is a collection of techniques for controlling the
execution of this classification/inference process.

6.1 Sensor and Image Processing Library

These are image and signal processing routines and sensor modeling objects. They
can be categorized as follows:

Sensor Modeling Objects

Pre-processing (spatial transformations)
Segmentation (extraction of higher-level structures)
Feature Calculation

Sensor modeling objects emulate sensors in predicting the interaction of energy

with objects representing matter and energy in the world. The pre-processing
functions are operations on 1, 2, and 3-dimensional collections of sensor values that
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transform, but typically do not reduce the information content of the data (e.g. look-
up-tables). Segmentation involves extracting higher-level structure from this data,
such as extracting 2d curves and surfaces from a 2d image.  Feature calculation
computes statistics on these higher-level structures, resulting in collections of
measures.

Appendix B lists the public-domain source packages we have identified for further
consideration for inclusion in the environment. We also list source packages that
are available for one-time license fee with no royalties on reuse of object code.

6.2 Model Library

This library supports the representation and manipulation of spatial, temporal, and
other models. Spatial models are typically 2 or 3-dimensional objects, represented as
a discrete collection of pixels (or voxels) or represented symbolically with an
equation and/or algorithm that describes a shape. Connected models are built out of
simple models, linked with constrained coordinate transformations (through methods
of coordinate objects) that define the degrees of freedom between the two parts.

The library supports the projection of these models onto other coordinate systems
and lower dimensions. 3d models are projected onto a 2d screen. The library also
supports the symbolic manipulation of symbolically-represented models, in order to
project the model's 3d constraints into a predicted 2d view.

6.3 Matching and Grouping Library

This library consists of routines for placing higher-level interpretations on
information extracted from sensor data, by exploiting information stored in models,
and matching what is known about the models to what has been observed in the
sensor data. '

Predictions of what might be seen in the sensor-data constrain interpretation of the
sensor data, and, conversely, evidence accrued from the sensor data, directs the
consideration of possibilities in the model. Perceptual grouping is included in this
library, because it relies on a priori facts about world structure in order to decide
how to perceive sensor data.

6.4 Interpretation Library

This library supports various approaches for machine inference. Typically the
inference to be made is the classification of some object that has been pre-processed
by the sensor and image processing, modeling, and matching/grouping libraries.
This library supports multiple inferencing approaches, including statistical
classifiers, bayesian inference, logic engines and neural nets.

6.5 Reasoning Control

This library is the control layer for the inferencing that is represented by the
interpretation library. It decides what (abstract) processing task to do next, using a
particular strategy such as weighing the expected cost, the expected value of
information, etc.. and using this metric to choose the next best task to attempt.

Note that reasoning control is not the same thing as process control described below.
Process control is a mechanism for sequencing processes using standard
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programming techniques, and has no special knowledge of decision making
techniques.
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20 _ Implementation JIssues

This section describes the software development and test plan including the
management procedures in Section 7.1. Section 7.2 discusses some of the
implementation specific issues, that is, issues that are specific to a particular choice
of hardware or support software package.

The order of implementation is to produce some core objects and their display
methods first. Polygon objects (1,2, and 3D) are the first core objects implemented.
Then, the following may be performed in parallel with appropriate interactions to
provide a consistent system.

1-  User Interface

2- Function/Object Libraries
3- Inferencing

4- Database System

The run-time environment grow sout of the user interface and is developed after the
remaining functional areas are essentially in place. This is a recursive/parallel
approach in that the four functional areas can be done essentially in parallel with
each area being recursively developed to provide additional capabilities. Several
design issues that impact the efficiency of both the design/build process and the
resultant environment are addressed here.

7.1 Software Management Procedures and Tools
7.1.1 Development Code and Document Version Control

The code and documents for this project are managed using the RCS code control
system.  This means that all versions are recorded and can be recovered. It also
means that the object codes that are created can be strictly controlled. This is
important for achieving reusability of code.

7.1.2 Library Maintenance and Installation

The key issues are standards for adding code to libraries, and methods of adding new
(sub-) libraries. Standards are addressed primarily by documentation and version
control.

The basic method of adding a (sub)library is to extend the class hierarchy to create
objects that appropriately utilize new packages of methods. So, for example,
multiresolution pyramids are a subclass of connected objects. multiresolution search
methods can be added to the objects, or stored in a new sub-library of the matching
and grouping library that deals with multiresolution structures.

To aid installation of new libraries, graphical, table-based installation of graphical
programming options (e.g. new object creation menu) are provided. In addition,
how-to source-code examples, an installation manual, and appropriate make files are
provided.




7.1.3 Testing Approach

A public-domain test interpreter, icp, can be applied to each C++ module to test its
functionality. Manual code walkthrough after development and initial testing looks
for exceptions such as poor memory allocation, inappropriate function calls, missing
methods, and unexpected interactions between objects. Integrity testing will be built
in to a limited extent, such as code within an object that checks internal pointers for
consistency, or writing a known pattern in "dead space” at the end of data structures
to catch overwriting.

7.2 Windows Interface

The Xwindows interface is through the InterViews package. This package provides a
C++ toolkit for using Xwindows.

7.3 External Data Base Interfaces

There are three aspects to an external database interface: formulating a query that is
understood by the serving, external database, communicating with the database to
input the query and receive the returned data, and third, handling the returned data.

Most external databases of interest at this time are relational databases that speak
standard query language (SQL), such as Sybase, Oracle and Ingress. A graphical
interface is formulated that represents data objects as icons .or text, and uses
graphical selection methods to indicate ANDs, ORs and NOTSs, such as pluses between
icons for ANDs, an oval enclosing multiple icons for ORs, and the classic diagonal red
line for NOT. The graphical query is translated to SQL. This approach gives a generic
SQL interface.

The interprocess communication between the serving database and the client IU
environment is managed by internet and Unix protocols, with the IU environment
running the, possibly networked, database query in the background.

Large volume data returns are handled by two methods: a trap at the internet
protocol level to threshold the amount of data that the system is willing to receive
(this level can be user set), and a paging/buffering scheme to handle large images
and large numbers of images.

7.4 Efficiency Approaches

Operations within the vision environment can be accelerated by three methods:
addition of various hardware accelerators, multiple processes communicating via
shared memory and other Unix inter-process communication mechanisms, and the
networking of multiple platforms. Each of these are discussed in the following
subsections.

7.4.1 Hardware Accelerators
The obvious accelerators are relatively inexpensive boards that are Sun compatible,

such as the one provided by Vitek. These boards are treated as internal compute-
servers, and interaction with them is via a prescribed set of function calls. The
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function calls accomplish both the download/upload of data, and the setup and
invocation of computation.

7.4.2 Shared Memory

Multiple processes can be used to accelerate operations by allowing a compute-
intensive operation to be spawned as a background process (or be put in the
background automagically when the wuser begins interacting), leaving the
foreground processing available for user interaction. In addition, the time spent
waiting for disk I/O and other hardware interactions can be reapplied to other
processes.

7.4.3 Networked Platforms

An alternate to add-in boards is a network of machines, some of which act as
compute-servers. These machines are dealt with in much the same manner as the
add-in boards (see section 7.4.1), with the added possibility of file sharing through
use of the Network File System (NFS) standard. In this case, the network is being used
to farm out specific computational chunks, rather than being a full distributed
problem decomposition. One possible implementation is by remote procedure calls
(RPC)s as background processes.
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8.0 Applicati
8.1 System Engineering Application Development Approach

A high-level approach to generating requirements for the core and domain specific
workstations (ws) is shown in Figure 8. Each domain area defines a set of tasks that
correspond to client solutions to representative domain specific problems.
Requirements are generated specific to each task that would result in a solution if
built to spec. These are sifted together to take our best cut at the common core
requirements. The generic, core ws is designed to meet these requirements. Based on
the core design, extensions are designed to fulfill the domain specific requirements
for each domain task. Of course, domain ws should strive to maximize synergy
between solutions to multiple problems in the same domain (instead of developing
many diverse ws to fulfill diverse tasks). Some of these steps, especially the last three,
can be performed in parallel, but the sequential flow picture captures the
philosophy of the approach.

DEFINE DOMAIN TASKS

J {TASKS}

GENERATE DOMAIN WS
REQUIREMENTS

J { (TASK, DOMAIN REQS)}

GENERATE GENERIC WS
REQUIREMENTS

i {CORE REQS}

CORE WS DESIGN

i PARTIAL DESIGN

DOMAIN WS DESIGN

Figure 8: Approach to Requirements
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The objectives of an IU Workstation are to provide a hardware and software
environment that greatly facilitates development of IU application systems by
providing a core infrastructure of integrated tools that are common to most
applications, and that traditionally take up the lion's share of development time
when systems are built from scratch.

We believe the most direct path to defining such an IU environment is to define
domain specific IU task applications and design the IU workstation environment so
that it supports development of systems that can perform the domain tasks. In other
words, the IU environment is used to build systems that then solve domain problems,
but we begin with the domain problems so that we are sure the resulting
environment can solve those problems. In order to guarantee building an IU
workstation environment with suffcient generality to apply to IU development in
many domains, we have adopted the approach pictured in figure 8 to generating
requirements for the IU workstation.

Diverse domain areas are chosen and representative tasks are defined in each domain
area. Requirements are generated specific to each task that would result in a solution
if built to spec. These are sifted together to take the best cut at the common IU
workstation requirements. The generic, core IU workstation is designed to meet these
requirements. Based on the core design, extensions are designed to fulfill the domain
specific requirements for each domain task. We have selected two domain areas,
terrain analysis and medical imagery analysis, to focus our workstation development.

8.2 Domain Task Analyses

As explained in section 8.1, two task areas, terrain and medical IU applications, were
selected as foci to guide workstation development. The terrain task analysis is
presented in section 8.2.1 Section 8.2.2 presents the medical imagery task analysis.

8.2.1 Terrain Task Analysis

We have selected two terrain domain tasks: semi-automated, syntactic, "snap-to"
digitization of hardcopy maps and interactive, semantic map/image measurement
tools. The terms used in these task descriptions deserve some explanation. "Semi-
automated, syntactic 'snap-to' digitization" is the task of interactively choosing a
small set of points on a terrain feature from a bit-mapped image of a scanned (i.e., a
“digitized" image in the conventional sense) hardcopy map and having the
workstation infer the full set of points on the feature (a road, for example), but
without specialized knowledge about the feature, except perhaps for basic geometric
properties (e.g. linear feature, area, etc.).

An ‘interactive, semantic map/image measurement tool kit" is a set of measures that
can be used on already digitized maps (i.e., scanned and interpreted maps, stored in a
digital terrain database), but can also be used at the time of digital terrain database
creation to compute and store

attributes. Potential tools include line of sight calculations, earth/hole volumes,
shortest-path computation, time-to-travel-path, 3D view visualization, etc.

Roads are a good first focus for semi-automated map extraction, both because they are
one of the simplest map features to define for machine segmentation, and because
they are required for many common applications. Similarly, line-of-sight analysis is
a good first choice for measurements, because it is commonly used, and because it
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requires manipulation of elevation maps, which is technically difficult to do without
computer aid.

Examples of features stored in digital terrain databases and associated textual (usually
relational) databases that are candidates for semi-automated extraction include roads,
railroads, hydrology features, land parcels, agricultural plots, fields, forests, task-
defined elevation features (e.g. hills, air-space obstructions), and task-defined sets of
buildings (e.g. residences, industries). Examples of measurements made from digital
terrain databases include, line-of-sight, land volume, areas of different (and possible
compound) terrain types, watershed, distances between points and between
geometrically more complex terrain features, such as rivers and towns, as well as
topological relations for different terrain features including between, nearness and
adjacency.

The objective of terrain task analysis is to decompose the execution of the terrain
tasks such that the underlying required functionality is naturally exposed, making
more obvious the design solutions to building a system that achieves this
functionality. Our approach to this is twofold: first to step through the system user's
tasks in scripts, essentially scripting (or verbally storyboarding) the functionality of
the wuser-interface, and second to analyze data transformations as the wuser
experiences them (based on the storyboard) inferring progressively finer levels of
black-box functionality the system must possess. The terrain task script is presented

in section 8.2.1.1, and the user-apparent data transformations are discussed in section
8.2.1.2.

8.2.1.1 Terrain Task Script
1) Select map, scan (i.e. bitmap digitize) if necessary.

Assumes: Maps exist in an on-line accessible form, and/or there is a user-
friendly scanning procedure available for hard-copy maps. The latter also assumes
that scanning resolution is sufficient versus map detail to enable the feature
selection, etc. of the following steps.

2) Indicate feature type (e.g., linear, area, road, field...) or measure type (e.g. line-or-
sight, shovel, hourglass, spyglass...).

Assumes: Feature and/or measure types are relevant to map features and to the
domain task (e.g. urban planning, agricultural survey, etc.)

3) Select feature or measure type.

4a) Select mode to label feature and type-input for feature label.

Sa) Choose points on features in displayed map.

6a) Select mode to do snap-to feature segmentation or to perform the measure.
7a) View the displayed results of feature extraction and/or measurement.

8a) Modify the displayed results as necessary.

9a) Select mode to store labeled features or measures to database.
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Assumes: Storage mode is a known default. Otherwise this step must be
enhanced to select storage location. Typically, the map and/or measure type will
have a storage location and format associated to it already.

4b) Select choose feature mode and type-input for label for the feature.
5b) Choose points on features in displayed map.

6b) Repeat 4b and S5b wuntil all labeled features selected for extraction or
measurement.

7b) Select batch-mode for snap-to feature segmentation or measurement.

8b) Select mode for viewing results of batch feature extraction or measurement.

Assumes: Job is identified by user or other method and accessible by that
identification. If user has multiple jobs, system must appropriately differentiate and
allow user selection for viewing.

9b) Modify the displayed results as necessary.

Assumes: All results of this job are simultaneously displayable and usefully
viewable (e.g. non-overlapping). If not, steps 9-10 must step through feature by
feature or screen by screen.

10b) Select mode to store labeled features or measures to database.

Assumes: Storage mode is a known default. Otherwise this step must be
enhanced to select storage location. Typically, the map and/or measure type will
have a storage location and format associated to it already.

8.2.1.2 Terrain Task Data Transformations

A terrain task data transformation refers to the displayed output a user observes in
response to a set of inputs while performing the terrain task script. Inputs include
items selected or typed by the user, as well as data the user assumes is present, such as
scanned maps and digital terrain databases. The "transformed data” includes the
visually observed displays, such as a bit-map overlay of an extracted terrain feature,
as well as the implied data the user assumes supports the display, such as the
bounding polygon of the segmentation. The user-apparent data transformations
suggested by the task script include the following.

1) selected and typed entries ----- > map (= scanned map image + any associated textual
data)

2) selected map ----- > displayed map and textual data

3) selected feature type and chosen points ----- > segmented feature

4) feature segmentation ----- > feature segmentation (interactive)

5) selected feature type and chosen points ----- > segmented feature + measure

6) selected extracted features and/or measures + labels----- > database record
(indicating storage of features and/or measures)

The transformations imply the existence of certain user-apparent system
functionalities. These are listed below.

Transformations (1) and (2)

45




A database(-like) facility is implied that consists of a set of storage units for scanned
maps imagery and associated textual data, with the database facility inverted on one
or more of

a) map type

b) measurement task type

C) map source

d) digital database for map feature and/or measurement storage
e) job identifier

For single-task users, like urban planners, the measurement task type or map type
are more likely keys. For multi-task users, like DIA, or a centralized city GIS facility,
the map source and/or storage database are more likely keys. In the former case, the
user usually accesses the same set of maps, extracting information and making
measurements from it. In the latter case, the user accesses from a wide variety of
maps and map databases, often updating the maps and associated databases. Job
identifiers can be used to allow individual users or teams to work incrementally on
an on-going task. A job has an associated data structure that saves pointers to the
input and output data sources and job state. They can be indexed by user names or
task names.

Transformation (3)

This is the critical technical step of semi-automated segmentation. The feature
extraction itself implies a specific choice of segmentation methodology, and the use
of specific image processing, pattern recognition, search, and inference procedures.
The specific choices are not user-apparent. However, the output display is user
apparent and must allow the user to "verify at a glance" the correctness of the
terrain feature extraction. This probably requires a side-by-side display of the
system segmentation in graphic overlay, next to the un-segmented scanned map.

The choosing of some points on the terrain feature in the displayed map serves the
two purposes of indicating which feature is being stored and associated to the typed-
in label, and for seeding the otherwise automated feature extraction process. For
example, to semi-automate road segmentation in a scanned map, the user could be
directed to choose the two endpoints of the road segment, then the system extracts the
road segment between the two points. The choice of points clearly depends on the
feature extraction task; the user must be directed how to choose points so that they
are meaningful to the system with respect to the user's task. On-line instruction
regarding geo-object choices for the various feature types and data sources should be
available.

Transformation (4)

The user views the system's display of its terrain feature segmentation results and
allows the user to interactively edit the results if necessary. This is done using the
operations add, delete, move, undo and save, as defined in the glossary. The regions
and/or geo-objects should snap-to as points or other geo-objects are added or deleted.
A reasonable first definition of snap-to is gotten by using shortest-planar or
shortest-¢levation-grid distance to link points or other geo-objects.
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Transformation (§5)

A measure requires dynamic extraction of terrain features when they are not pre-
stored. In either case the system must understand a priori what features are required.
The points chosen by the user define the geographic region of interest for the
measure. If feature extraction is necessary, the user should be cued appropriately.
The system should be set up so that it is easy for the user to abort the process if it
requires feature extraction s/he does not wish to do.

Measures can output complex data structures such as geo-objects and/or regions, as
well as textual and numeric outputs. For example, line-of-sight calculations output a
polygon or elevation region with line-or-sight from a point or other region. Land
volume, on the other hand, outputs only a single number. Some measures require
sohpisticated geometric computations, such as surface, polygon, and/or line
intersection, union and difference. A full polygon algebra should probably be
supported.

Transformation (6)

Status messages for intialization and completion of tasks should be displayed. Storage
and retrieval of large volumes of data should have displayed meters or other devices
to indicate that the system is engaged in a task and how close to completion it is.
Storage and retrieval times should be estimated and warnings issued for time
consuming processes allowing the user option to alter or cancel the storage or
retrieval command. Asynchronous, batch-mode storage and retrieval should be
supported.

Systems that provide multiple users to cooperate on the same task may have special
requirements for data integrity, such as write-lockouts to avoid synchronous map
updating.

8.2.1.3 Terrain Applications Requirements
In both terrain tasks, the top level user interaction steps are as follows:

1) Select mapsfimagery, scan (i.e. bitmap digitize) if necessary.

2) Indicate feature type (e.g., linear, area, road, field...) or measure type (e.g.
line-or-sight, shovel, hourglass, spyglass...).

3) Select points on features in map and/or image.

4) Tell system to input features to database or to perform the measure.

5) Verify correctness of feature extraction and/or measurement.

Infrastructure requirements such as friendly and efficient user interfaces, a need to
robustly interact with digital terrain databases, large data storage and retrieval
capabilities, etc. are common to more than one step. Nonetheless, in the following, we
attempt to list requirements in correspondence to the user functions, rather than in
terms of elements of the solution (like user interfaces).

1) Select maps/imagery, scan (i.e. bitmap digitize) if necessary.




1.1) The system must be equipped with standard map scanning (e.g. flatbed
digitizer) interfaces that provide adequate resolution to capture the necessary map
detail.

1.2) If scanner is used, then digitizing should be done on screen on the
scanned map.

1.3) Sufficient workstation memory is required to hold the terrain database
corresponding to the scanned map segment in memory.

2) Indicate feature type.

2.1) The system must interface to ARC/INFO, and a selection of standard terrain
digital databases to be determined by the target market.

2.2) We should choose and make available a digital terrain database that comes
standard with the product. Coverage and resolution requirements will be determined
by market analysis.

2.3) A uniform interface should be available for all terrain databases the
system communicates with.

2.4) A display showing the sclectable terrain features present in the database
corresponding to the displayed map segment should display in less than 10 seconds
from the time map coordinates are entered, if the database segment is in local
storage.

2.5) If the digital terrain database segment requires more than 15 seconds for
retrieval to display, a message should be displayed telling the user the function that
is being performed, and giving dynamic indications of progress.

2.6) The user should be able to select the digital terrain features with a
minimum of manipulation (e.g. keystrokes, mouse clicks, etc.).

3) Select points on features in map and/or image.

3.1) It should be clear how to enter the modes to indicate points.

3.2) The points should be coded so that it is clear which correspond, to which
features and/or measures; it should be intuitive and require minimal manipulation to
change points, "move" a point in either map or image, etc.

3.3) It should be obvious how to indicate that point selection is complete, either
on a feature, or on the entire image/map.

4) Tell system to input features to database or to perform measures.

4.1) It should be obvious how to indicate that point selection is complete.

4.2) The system should return control to the user in less than 10 seconds;
either input and/or measurement should be available for verification or relegated to
an off-line or background process.

4.3) If producing the verification display needs to be a background process,
then there must be a protocol of queuing and recalling verification displays at a later
time (e.g., stored up in a pull-down list). Any job that has been completed as far as the
user is concerned should appear in this list, with its status indicated even if it's not
yet available for verification.

4.4) If any process that occupies the user interface (so that the user cannot get
response from the workstation) takes more than 10 seconds, a message should be
displayed indicating operations in process.

5) Verify correctness of feature extraction and/or registration.
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5.1) A verification display should be available showing an overlay of extracted
features against map and/or imagery features. This should be togglable so that the
user can switch between the original and extracted in focus of attention.

5.2) It should be possible to interactively correct the extracted feature; re-
storage must adhere to the requirements in (4).

5.3) Correction of feature extraction should be intuitive; it shouldn't be
necessary to read a manual.

8.2.2 Medical Task Analysis

We have selected two tasks: automated intercortical volumes from hand radiographs
and automated prostate volume quantification in CT imagery. Both measures are key
medical indicators; the first in diagnosing and tracking arthritis, the second is a
direct indicator for prostate surgery (radical prostatectomy).

The choice of the arthritis measure application is motivated by the following facts.
The physics of sensor interaction of radiographs with human hands is a completely
modeled, well-understood technology. Probability models for scattering of xrays in
soft-tissue, bone, and air are commonly available in the medical physics literature
[Curry et. al.-84], [Kereiakes et. al. -86]. This forms the basis for strong prior
probabilities in imaging models. In the application of radiographs, the imaging
geometry, approximate object (i. e., hand) aspect, and the ambient characteristics of
the energy source (i.e., xray voltage) is always known, so this is a highly
constrained, but not a toy problem. In this respect it is representative of a broad class
of medical, manufacturing and inspection tasks for machine vision. Finally, hands
are complex enough that the modeling problem is important, but simple enough that
we can hope to accomplish the task within a reasonable project scope. Hands are 3D
with articulated joints. Because the sensor is invasive, it is necessary to model the
layered volume (not just the surface). Most of the primitive hand components are
cylindrical in basic shape [Meschan-75]. We anticipate that it is not necessary to
model deformable surfaces for hand recognition. Some population statistics for
normal variation in bone size and range of joint articulation are available in the
medical literature [Poznanski-74].

Prostate volume measurement requires working with 3D CT imagery, requiring
image processing operations to exist for 3D image processing, and similarly
requiring surface matching and volumetric understanding as is required in range
imagery. The prostate requires irregular curved surface matching, but having genus
one, is much simpler than the heart, for example. Additionally, the prostate is a static
organ, unlike the heart, so that shape remains stable over time.

As in the terrain task, the objective of medical task analysis is to decompose the
execution of the medical tasks such that the underlying required functionality is
naturally exposed, making more obvious the design solutions to building a system
that achieves this functionality. We again present a task script, section 2.2.1, followed
by the medical task data transformations in section 2.2.2.

8.2.2.1 Medical Task Script

1) Order exams/measures
1.1) Select order mode .
1.2) Select appropriate ficlds (e.g. modalities, views, measures)
1.3) Type input for name, institution id OR use OCR to scan patient
demographic data
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1.4) Select results viewing station(s)
1.5) Select execute mode

2) Call up results
2.1) Select results mode
2.2a) Type input or select "my" icon to call up batched exams
Assumes: batched exams and "my icon" exists
2.2b) Select appropriate fields
2.3b) Type input for name, institution id OR use OCR to scan patient
demographic data

3) View results
3.1) Select exam(s) to view
3.2) Select retreive and/or display mode

4) Modify results
4.1) Select modification mode
4.2) Select sub-mode of delete OR add OR move OR undo
Assumes: modification mode selected was “"segmentation
4.3) Choose geo-objects
4.4) Select done-modify

"

5) Order additional measures
5.1) Select measures mode
5.2) Select appropriate fields
5.3) Type input as requlrcd by 5.2 (typically none requlred)
5.4) Select results viewing station(s) (should default to current settings)
5.5) Select execute mode

6) Archive results
6.1) Choose exams to archive
6.2) Select archive mode
6.3) Choose archival devices
Assumes: More than one archive available
6.4) Select execute mode

8.2.2.2 Medical Task Data Transformations

A medical task data transformation refers to the displayed output a user observes in
response to a set of inputs while performing the steps in the medical task scrxpt
Inputs include items selected or typed by the user, as well as data the user assumes is
present, such as medical imagery from exams, and demographic data routinely
associated with the exams. The "transformed data" includes the visually observed
displays, such as a bit-map overlay of a segmentation, as well as the implied data the
user assumes supports the display, such as the bounding polygon of the
segmentation. The user-apparent data transformations suggested by the script
include the following.

1) selected and typed entries ----- > exams (= imagery + textual data)
2) selected exams ----- > displayed imagery and textual data

3) selected and/or displayed exams ----- > segmented imagery

4) segmentation ----- > segmentation (interactive)

5) selected exam ----- > measure

6) two selected exams ----- > comparison measure
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The transformations imply the existence of certain user-apparent system
functionalities. These are listed below.

Transformations (1) and (2)

A database(-like) facility is implied that consists of a set of storage units for exam
imagery and textual data, with the database facility inverted on

a) patient names by lexicographical ordering

b) patient by social security number

c) patient by local institution id

d) anatomy by hierarchical anatomical structuring order

e) dates by chronological ordering

f) modalities by lexicographical ordering OR data storage source
g) non-local institutions by lexicographical ordering.

The options are in priority order for the medical task. Most access is concerned with
specific individuals, however, doctors also need to be able to access on anatomy and
modality for purposes of teaching, research and demonstration. The options (e) and
(f) are probably not both necessary to invert on (because the bucket size of retrieved
exams will be small after patient and/or anatomy and/or either one of modality or
date are selected), but are included for completeness. The option (g) will only be
applicable when multi-site institutions are involved, such as the VA, Humana and
Kaiser medical centers, hospital networks in socialistic countries (as most are run in
Europe, for example), DoD hospitals, distributed clinics, etc.

Because of the large size of imagery in exams (typically from 6 to 100 megabytes per
exam), it is standard practice to separate the textual data from the imagery, and to
make it available from database queries without requiring associated imagery
retrieval. The non-imagery exam data includes all textual and numeric patient data,
including demographic data, dates and locations of visits, attending and referring
physicians, modalties of imagery, anatomy imaged, imagery numbers, sizes, bit-
depths, and pointers, diagnoses, measures, and additional physician's comments.

Transformation (3)

The capability to segment imagery implies a specific choice of segmentation
methodology, and the use of specific image processing, pattern recognition, search,
and inference procedures. The specific choices are not user-apparent. However, the
output display is user apparent and must allow the doctor to "verify at a glance" the
correctness of the segmentation. (FYI, doctors often call segmentation "contouring"
imaged tissues. Bones, organs, and other soft tissues like ligaments, fat, etc. all fall
within the taxonomic category called "tissues".)

Transformation (4)

The user (a physician or highly skilled technician) must be able to work directly on
the verify-at-a-glance displayed output of transformation (3) to modify it for any
system created segmentation errors. The operations of add, delete, move, undo and
save are the tools for this. The user should be able to push the display around until
s/he likes what s/he sees, and then save the result, which will be used for auto-
recalculation of diagnostic measures that depend upon the associated segmentation.
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Transformation n

The basic measures are area and volume of segmented tissues. For an area, this is
computed as pixel count multiplied by the appropriate (constant per image) factor
that transforms pixels to square centimeters based on the viewing geometry and
physics of the scanner. For computed radiography (digital xray) we can
automagically measure this factor from the grid that appears on the borders of the
image. For digitized imagery, we must input this factor based on specific scanners
and viewing procedures, or we must automagically measure it from a marker of
known size placed in the image. The standard such marker is an "L" or "R" that is
routinely placed on most xray imaging plates to indicate the view the patient was
imaged from.

Other associated area measures include longitudinal axis computations for phalanges,
average pixel intensity, maximum region diameter, and specific region diameters
that depend upon finding certain anatomical points in the bounding polygon of the
segmented region.

Volumes are usually computed by doing the areas of the slices, and then
interpolating between adjacent segmentations. The interpolation is straightforward,
but depends upon knowing the thickness of, and distance between, slices in the exam
(as the set of images making up the volume is called). Usually these are constant
factors for a given exam, but they do not have to be(!).

Comparison measures usually compare the measures the last time the patient was in
against the current measures. So this requires the system to call up the last exam,
make the measures if they weren't made then, and then also to do the measures on
the current exam. Comparisons will typically be presented as percent increase or
decrease, as well as absolute increase or decrease. If there is a longer history,
another presentation, such as a graph, might be nice. Physicians do not currently
produce such graphical aids. Comparison exams should be presented side by side, with
the old exam to the left of the new one.

8.2.2.3 Medical Applications Requirements

The medical workstation design requirements are driven by the workstation task
requirements, and divided according to a top level breakdown of functional units
including:

» Physician/Technician User Interface

* Network to Scanners, PACS, RIS, and HIS

« Databases: Anatomical Models/Scanner Models/Patient Exams/Imagery
Features

« Image Processing Functions

* Inference for Anatomical Segmentation

e System Control.

In the following, we break out requirements according to this functional system
decomposition.

1.0)  Physician/Technician User Interface
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1.1) The interface must be highly reliable and fault-tolerant. In particular, it
should be possible to move between states without rolling back through each
intermediate state, and to alter inputs and/or abort at almost any point, saving
state(s) and without catastrophic consequences.

1.2) Manipulation (typing, pointing, etc.) should be minimal to accomplish any
task.

1.3) There should ideally be only one visual focus of attention at any time on
the screen.

1.4) It must be possible to paint an image in less than 5 wall-clock seconds. In
general, no display should be slower than this (graphs, spreadsheets, etc.)

1.5) Displays must support a minimum of 16 bit deep pixels.

1.6) Full color overlays must be provided. Color should be 24 bits deep (i.e. 8 bits
each of red, green and blue) and color-tables should be changable in software.

1.7) It should be possible to draw on an image, then erase the overlay without
(apparently) affecting the image underneath. In particular, if the image needs to be
re-drawn, it must be transparent to the user.

1.8) Both interactive and automatic imagery color overlay capability should be
provided. Color tables should be interactively changable.

1.9) Zooming should be accomplished in no more than 5 wall-clock seconds.
Both zoom window and zoom around point should be supported. Zooming should zoom
both image, overlays and any "chained" windows.

1.10) Both 2D and 3D imagery display should be provided. 3D imagery must
support 512x512x256, 2D must support 4Kx4K imagery. Imagery must be viewable in
its entirety (i.e., without scrolling) in unzoomed mode.

1.11) Volumetric imagery must be viewable from any perspective.
3D and 2D rotation and translation must be supported.

1.12) 2D cutaway views of 3D imagery at an arbitrary angle should be
supported.

1.13) 2D imagery display should "fill" the display window.

1.14) 3D graphic object display should be supported including raster and
vector representations with hidden line and surface capability.

1.15) It must be possible to overlay 3D graphics on 3D imagery, with the same
erasability requirements (see 1.7 and 1.8) as 2D overlays.

1.16) Display should convey the same information to colorblind people as it
does to normal color-sighted people.

1.17) Any operation requiring more than 5 seconds of wall-clock time to
execute should display messages indicated what it's doing.

1.18) Any operation requiring more than 15 seconds of wall-clock time should
be provided in background mode so that other workstation interaction can go on.

1.19) Imagery displays should support mouse, light-pen or other pointer
interaction.

1.20) Menus, sliders, buttons, tables, graphs, icons and sprites should be
supported both interactively and automatically.

1.21) Imagery browsing should be supported with programmable choice of
"sub-sample” function for reducing imagery size for browse windows.

1.22) If multiple screens are required to browse through a single patient exam
(which can be up to 256 images), screen switching should be extremely rapid,
certainly under 5 seconds, hopefully under 3 seconds.

1.23) The user interface should be easy-to-learn, easy-to-recall and easy-to-
use.

1.24) Custom interface selections (e.g. customized defaults, button locations,
etc.) should be available and easy to set up and use.




1.25) An easy to use access-security system should be provided. This security
system must allow programmability of selection of access to system
functions/modes/devices/data that are permitted for varying levels of clearance.

1.26) The user interface to external databases, etc. should be represented in
visual, medical-domain terms/appearance.

1.27) The user interface should be portable to (almost) any Unix box with
sufficient memory. It should provide network server capability (a la X, NeWsS, etc.)

1.28) On-line help should be available but not needed by the user.

2.0) Network to Scanners, PACS, RIS, and HIS
(PACS= Picture Archival and Communication System, RIS= Radiology
Information System, HIS= Hospital Information System)

2.1) The workstation must support standard networks, (ethernet, fiber-optic
ethernet, hipi, etc.) and standard network communication protocols including
TCP/IP, ISO, IEEE, etc. Custom networks must be supported for critical vendors
(probably PACS systems not known at this time, scanner vendors we contract with,
etc.) )

2.2) High-speed/high-bandwidth communication must be supported. Exact
numbers are not yet known, but probably in the hundreds of megabytes per second
range.

2.3) Must decode and read imagery formats including ACR/NEMA, ISO and IEEE,
as well as “proprietary" formats for CR/CT/MRI scanners made by GE, Siemens,
Philips, Toshiba, Picker, and Diasonics at a minimum. Data structures, selections etc.
should support addition of formats as required.

2.4) Data exchange between internal databases and institution databases must
be supported including all leading commercial PACS, RIS and HIS systems.

2.5) We must provide accurate modification tracking of changes to medical
records, including noting who made what changes when.

2.6) The possibility of distributed updating of records must be accounted for,
either by some communication protocol between workstations, or by prohibiting it
(e.g. data locking).

2.7) Access to records must be security controlled to meet legal, medical and
institutional requirements for patient privacy and medical protocols.

2.8) The workstation should be able to obtain dynamic models of the contents of
the accessed external databases such that if an unusually large retrieval is indicated,
the retreival is confirmed before execution.

2.9) The workstation should provide a uniform interface to all
imagery/records storage devices. Details should only be available for debugging
problems; otherwise it should look like a single database.

2.10) If multiple workstations are networked in and/or between institution(s),
they should communicate to effect transfer of data to meet scheduling needs for
availability of records/imagery where and when required for operational needs of
the institution(s).

3.0) Databases: Anatomical Models/Scanner Models/Patient Exams/Imagery Features

We first list requirements that are common between databases, then the
requirements that are specific to each.

3.1) We need to be able to query over arbitrary "keys" or access slots.

3.2) We need to be able to construct arbitary boolean algebraic queries over
multiple database keys.
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3.3) The interface to database queries, whether they are databases resident in
the workstation or external to it, should be intuitive and easy to use by anyone with a
high-school education (e.g.,, you shouldn't have to know boolean algebra).

3.4) Database searches should be optimizable (i.e., programmable), to depend
on the type and space/time characteristics of the data being searched for (e.g. graph
search over anatomic models, spatially oriented search for perceptual grouping in
imagery, etc.)

3.5) The anatomical models and scanner models databases must be persistent.

3.6) The patient exams database must be locally persistent until it can be
verified that the records/imagery have been archived in the appropriate external
database.

3.1) Anatomical Models Database

3.1.1) The database should support representation, storage and retreival of
point, curve, surface and volumetric objects, including graphs and boolean
combinations of them.

3.1.2) Complex relations such as articulation should be supported between
various modeled anatomical parts.

3.1.3) Pointers to image processing and feature extraction operators should be
supported.

3.1.4) Models should be indexed by patient demographics. In particular, ranges

- and probability distributions over them should be representable for all model

features.
3.2) Scanner Models Database

3.2.1) Models should be available for computed radiography, digitized xray,
computed tomography and magnetic resonance imagery. Scanner modeling includes
procedures for predicting appearance of imaged anatomy based on imaging
geometry and anatomical parts (as represented in the anatomical models database).

3.2.2) Output of applying a scanner model to an anatomical and imaging model
should be an imagery appearance prediction that is represented to be usable by
image processing and inference operators.

3.2.3) Distributions of prior probabilities of imagery appearance based on 3.2.2
should be provided in an inference readable format.

3.3) Patient Exam Database

3.3.1) Records selection must operate from all minimally sufficient queries.

3.3.2) Self-contradictory queries must be handled, either by making them
impossible, by offering auto-ORing and confirmation to the user, or some other
method(s).

3.3.3) Matching of input data such as patient names, social security or other id
numbers, etc. should support partial matches, be case insensitive and accept all
possible standard syntaxes (e.g. first name, M.L, last name versus
last name, first name, M.I., etc.)

3.3.4) Ideally, mispellings, homonyms, and any other known standard data
entry problems should be handled subject to reasonable speed requirements (TBD).

3.3.5) It should be clear if a measure has already been performed, and it should
be easy to indicate re-doing the measure. .

3.3.6) Multiple values for the same measure should be maintained, and the
differences accounted for (e.g., if a physician interactively modifies a segmentation
and asks for a recalculation, but all on the same exam.)
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3.3.7) It should be easy to retrieve and view prior exams, and indicate which
ones should be used for comparison measures and/or trend tracking; again standard
defaults should be available and easy to indicate.

3.3.8) Multiple exam trends should be plotted in a self-explanatory, easy to read
fashion, with links to multiple records available for display of interactively selected
comparisons.

3.3.9) Linked records, e.g. comparison measures across multiple exams, should
be indicated so that they can be quickly recalled for viewing.

3.3.10) Sufficient local storage should be provided to buffer exams. Sizes of this
buffer are not yet known, but will easily be in the hundreds of megabytes and is
likely to be in the thousands of megabytes.

3.4) Imagery Feature Database

3.4.1) Dynamically created feature databases as the output of image processing
operators should be supported.

3.4.2) Feature databases should be indexed by the imagery the features were
extracted from.

3.4.3) The databases should be spatially hierarchically represented to support
optimization of search for feature groupings.

3.4.4) Features should be linkable as instances of anatomical models that are
linked, when this makes sense (e.g. spatial relationships between extracted bone
surfaces).

3.4.5) Feature databases need only persist until imagery analysis is completed.

4) Image Processing Functions

4.1) A large library of standard image processing functions must be provided,
including arbitrary kernel sized convolutions, where the convolution window allows
arbitrary arithmetic and logical operations on the neighborhood.

4.2) Arbitrary sub-window and blotch (i.e. mask dependent) processing should
be provided for all IP operations.

4.3) Tt should be selectable on all operators whether the output takes the form
of images, lists, or a feature database, where these outputs make sense.

4.4) Operators should be able to accept the output of feature database queries as
inputs.

5) Inference for Anatomical Segmentation

5.1) Full Bayesian inference over either continuous or discrete values must be
supported.

5.2) Bayes nets must be dynamically instantiatable to correspond to instances
of hypotheses of instantiated models.

5.3) It must be possible to query the state of any subset of the Bayes net;
reasonable subsets (e.g. subtrees) should be efficiently searched.

5.4) The Bayes net must be a savable structure, but need not, in general, be
persistent.

5.5) It should be possible to efficiently search the model space and feature
space to perform matching, and to efficiently instantiate Bayes nodes based on the
result of the matches.

5.6) Metrics used for matching should be programmable; in particular,
sophisticated match metrics such as the Mahalanobus distance should be supported

6) System Control
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6.1) A full utility theory over the Bayes nets should be provided.

6.2) It should be easy to select and change value functions over the anatomy of
interest. The value functions should be linked to the anatomical model database, and
should apply to arbitrary levels of hierarchy there (e.g. curves and surfaces as well
as volumes).

6.3) Control should account for listening to the user while still maintaining
good efficiency in computationally intense processing.

6.4) The system should understand when "batch" type processing is required
and when realtime interaction is required. If it cannot provide the latter, it should
inform the user and give appropriate options.

6.5) System control should exhibit a certain level of fault tolerance; in
particular, self-diagnostics should be periodically run, and appropriate message
displayed if servicing is needed.

8.3 IU Application Development Task Analysis

The objective of IU application development task analysis is to present the generic
steps an application developer often repeats, and also to present the dependencies
between steps such that the underlying requirements for tool capabilities are
naturally exposed, making more obvious the design solutions to building tools and a
tool using environment that achieves this capability. Our approach to this is to step
through the tasks a "generic" IU application developer performs in scripts of
progressively finer detail, essentially scripting (or verbally .storyboarding) the
functionality of the user-interface. Section 8.3.1 is a summary of tasks the developer
embraces in building an image understanding (IU) application. In section 8.3.2 the
application developer's script is presented.

8.3.1 Summary of Application Developer Tasks

It is problematic to present a script of the actions an application developer performs,
as developers may permute the order and dependencies among operations in many
ways as they incrementally interleave development steps such as image processing,
model building and matching, for example. So the workstation designer needs to be
especially wary of depending too directly on the folowing script as a specification for
doing tool development. We can be sure that the functionality listed in this script is a
strict subset of what is actually required. Nonetheless, the intention of this script is
to cover the main steps and the obvious dependencies between steps in sufficient
breadth and depth so that the workstation designer produces a useful environment
even if s/he takes a narrow interpretation of the scripted capabilities.

A second complication is the need for the IU application developer to deal (more or
less) directly with many of the objects that are created during development sessions.
It is tricky to discuss the required functionality without suggested design solutions
(e.g. object structures) to simplify the language. However, the attempt is made here to
state the functionality without designing solutions to achieve it. As a consequence

the script sometimes reads a bit more like a set of tool requirements than a script of
actions.

The generic task the script is focused around is that of doing the development to
automate an IU application. Basically, the developer (we interchange the terms
developer and user from now on) wants to bring up some imagery, interactively play
with it to make measurements and begin guessing what sort of imagery operators can




work on the data. Then s/he wants to string together a bunch of existing image
processing (IP) operators, playing with parameters interactively to see what
evidence is extracted from the imagery.

Then begins the task of model development. The models are geometric, material,
constraints, and IP (or other) actions for evidence gathering. This requires
interactive geometric modeling, integrating population statistics, setting up and
experimenting with constraint equations, displaying lots of 2D and 3D geometric
objects, and interactively editing to create model objects out of these pieces.

Development of matching operators typically descends into a full programming
environment, writing matching routines dealing with the model and IP objects that
have been defined. Some basic math packages for solving cubic spline equations are
helpful here, and probably similar tools for various other parametrizations.
Grouping is a type of hierarchical and/or adaptive combination of searching and
matching features into more complex structures. Groupers can be looked at as
complicated matching routines, for the sake of how they fit into a development
environment. However, they tend to be different in that they can make extensive use
of Powervision style image feature filtering over a database of imagery features to do
their job. The need to have computationally intense numerical matching operations
in a tight loop with database calls that invoke spatial searches for the data to be
matched against is unique to computer vision grouping operations (to the best of my
knowledge). The idea of implementing this as database filtering is actually a design
approach rather than a required capability.

Now the IP operators, models and matching and grouping routines are integrated
together in an inference framework of some sort. Three of the most common such
frameworks in IU applications are Bayesian inference networks, blackboard-
executed frame-based systems, and logical rulebases. In any of these paradigms, the
developer defines model representations of (Bayes) nodes/frames/rules that point at
the set of model-components that can be confused in recognition. Conditional and a
priori probability distributions/confidences or weights of evidence must be defined
by either LUT or parametrizations and put into the network model/frames/rules.
Models for the IP operations should include expected time of execution as a function
of sw/hw environment and relevant input data parameters such as imagery size. The
Bayes net/blackboard/inference engine gets cranked manually until inference
starts looking reasonable.

When the net seems to operate well with human control, the next step is to
experiment with automated control regimes. For Bayes nets, values get assigned to the
top level nodes of the Bayes net, and utility functions can be generated from the
bayes net. The utility function assigns a number to each action that can be executed
as a self-contained process that comes from the bayes net. These numbers can be used
to rank the processes for operating system style control like FIFO and best-first.
Alternatively, a full, decision theoretic control can be used, or even rules giving an
exact specification of steps to be executed in the Bayes net. In blackboard systems and
rulebased systems, meta-rules must be developed that guide search routines and
prioritize rule execution.

Finally the whole thing's gotta be tested, a lot, by components and by system.
Statistics from runs should be automagically accumulated. Timing and other standard
software metrics should be provided at a tool level. Tables and graphs should be easy
to generate. Then the whole schmeer has to be software engineered for maintenance,
documentation and versioning.
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8.3.2 Hierarchical Application Developer Task Script

The “script” detailing the above development task summary is presented in levels,
each subsequent level expanding the detail of the previous. Assumptions about the
mode the system is in and the availability or display of data are indicated for each
step in the script where appropriate. Two types of or-ing for interaction options are
used. One is versioning indicated by "a", "b", etc. after the step number. Thus "4a"
means the "a" version of step 4, and "4b" means the "b" version of step 4. The other
type of or-ing is just to put "or" between options within the same script step as in
selecting a feature type or measure to perform.

Level 1

1) Access the appropriate data sources from the development environment.
2) Display, manipulate and examine data.

3) Develop image processing operators that extract evidence from imagery.
4) Extract features and measures from imagery regions.

5) Create models of objects to be recognized and measured from imagery.

6) Develop matching operators that compare regions, features and measures with
segments of models.

7) Develop inference structures such as Bayesian networks or rule bases.

8) Experiment with reasoning control strategies on the inference structures.
9) Craft the user interface to yield a natural vertical application solution.
10) Test the (semi-) automated solution for robustness and reliability.

Level 2

1) Access the appropriate data sources from the development environment.
1.1a) Type-commands to access images from known locations.

Assumptions: The developer knows the image s/he wants and it is accessible by
the system. The system need only have routines to use a pathname to retrieve an
image. The system may need to be able to access external databases, such as a digital
terrain database, and know foreign imagery formats, such as for medical images.

1.1b) Display an imagery database browser and make selections to retrieve desired
imagery.

Assumptions: All display and retrieval interaction is idiot-proofed. For large
retrievals, the developer is warned of the amount of data and asked to confirm the
retrieval. Interface has full database capability (keys on imagery names, dates,
sensor-types, general image content, etc.).

1.1c) Something in-between 1.1a (the user is smart and the system is dumb) and
1.1b (the system is smart and the user is dumb).

2) Display, manipulate and examine data

2.1) Display the selected imagery.

Assumptions: Display function is smart about window sizes versus image sizes.
Display does not change aspect ratio of imagery. Clipping is optional.

2.2) Do display manipulations of imagery, at a minimum including scrolling,
zooming by pixel replication, anti-aliasing rotation (e.g. the Fant warp routine), fast
transpositions and re-scaling.

2.3) Text describing imagery objects or ephemeris data should be able to be moved
into windows so it can be side-by-side with imagery or other signals. It should be able
to be zoomed up or down or font substituted to be bigger or smaller.
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2.4) Imagery should be interactively examinable for gray-level distributions and
pixel values in arbitrary sub-regions of the image. In particular we should be able to
look at an ascii (numerical) view of sub-regions of pixels, or get the histogram, mean
and variance of pixel values in an arbitrary region. It is nice to be able to graph the
profile of the pixel values under an interactively defined geo-object-line or for any
arbitrary sequence of pixels. It is convenient to be able to drag a small window
interactively over the image and see display of pixel values or other statistics
dynamically computed and displayed.

Assumptions: These operations can be interleaved with the display and
processing of any image. It should be possible to represent sub-regions for display
and examination by multiple methods. At a minimum it should be possible to
represent sub-regions as either regions output by connected component, or defined
interactively as a polygon or other geo-object.

3) Develop image processing operators that extract evidence from imagery.

3.1) Define and move about image display windows easily and have names for
them that are usable in interactive operations.

Assumptions: Image operators are smart enough to know about their need for
scratchpad memory (or scratchpad windows), and whether operations can be done in
place (like LUT filtering) or requires an output window (like FFT). The user is
prompted or shutout from illegal operations automagically.

3.2) Do standard look-up-table (LUT) filtering. The developer should be able to
easily set a LUT for gray level and/or color either by putting values in a file or an
interactive data structure, or by parametrically defining a function to generate
values for the LUT. Histogram equalization, parametrized gamma  correction, absolute
and multi-value thresholding should be available as standard LUT generating
routines.

3.3) A generic method should be available to do an algorithmically  parallel
neighborhood operation at every pixel. The most general capability allows the
developer to write any function that reads the values of the pixels in a runtime
defined neighborhood (n by m, circular or hexagonal) and replaces with center pixel
with a new value returned by the function. The most specific capability convolves a
square fixed size neighborhood (2n+1 by 2n+1, typically with n=1,2 or 3) of each pixel
with a kernel supplied by the user. Obviously, tools closer to the former are more
desirable. Border processing options should be available, including constant-fill,
reflection, and wrap-around (i.e. tiling). It should be optional to save results as
individual images, or "pipe" them into other operators, as defined by an appropriate
IP command language (oops, another solution method creeping in there...).

3.4) The method of 3.3 can be productively generalized to run along any defined
geo-object. Performing neighborhood computations along the boundary of a region
is a particularly useful operation for looking for gradient evidence in building
models and model-matching routines.

3.5) Imagery algebra and arithmetic function operations are often performed
between images; it should be easy to AND, OR or DIFF two images, and to do the
operations +,-,* and / between them. Again, results should be savable as images.

3.6) A very efficient connected component capability should be available, as this
routine is used often. It should be optionally 4 or 8 connected (hexagonal
connectivity and "sided" connectivity options are nice too, but not as frequently
used). Basic features should be computed for each component for efficiency (as they
can be easy tracked during component construction, and are likely to be needed for
further processing) including pixel-count, area in centimeters (if conversion
constant is supplied with the imagery), number of pixels in the interior and exterior
perimeters, average and variance of the gray-levels or for each of rgb, and genus
(number of holes).

60




Assumptions: The data structures output by connected component are
understood by virtually all other system components, including databases, display
and browsing methods, and routines that process imagery features; see the level 2
description of step 4.

4) Extract features and measures from imagery regions.

4.1) Most features are calculated as functions using as input the numerical values
and spatial relationships of a set of pixels in a connected region output by connected
component. So the object-manipulating environment should make this data easy to
obtain in arrays or other data structures for use in feature-computing functions.

4.2) The developer wants to create two basic classes of features. One is spatial
structures, such as boundary shape descriptors and surface fits to a region, and the
other is numerical (real-valued) measures of regions and their derived spatial
representations, such as area, curvature, lengths, etc. Multi-resolution versions of
most descriptors should be available. At any single level, the data structures
representing the features at that level of resolution should be accessible by IP and
feature creating routines the same way as single-resolution feature representations.

4.3) Whenever spatial representations are created, the developer wants to look at
distributions of the associated measures, and to experiment with thresholding the
distributions to look at various subsets of the feature space. The developer can specify
the thresholding interactively as values, or can use one derived automatically from
functions that look at distributions of feature values and execute criteria such as
"threshold at top 5% of histogram of pixel values", of "threshold at the top 20% of
high curvature points".

4.4) Search tools are used to define and process feature groupings. Feature search
tools come in two basic varieties, attribute matching tools, and relational search. In
attribute matching, set of regions or features are defined, typically as the output of
some operator, and the developer wants to see which ones fulfill certain constraints
on attributes, such as size, color, compactness, etc., stored with the feature or region.
Relational search requires looking not just at each feature, but also at spatial
relationships (and often other subsequent attribute comparisons) between multiple
features or regions. These again come in two varieties, unordered relations, and
sequential relations. Nearness is an unordered relation, but branching is an ordered,
or sequential, relation. Boundary following is also a common sequential search
operation.

Assumptions: All search tools understand any tools used for rapid (multi-
resolution) spatial indexing of features and/or imagery.

4.5) Database storage of features is an implicit solution approach here, however if
this approach is used, care must be taken to tightly integrate database access with IP
and feature searching/generating routines. It may, for example, be far more
efficient to pipe results from one operator to another without intermediate database
storage. This could require some smarts, or option switches, to know when storage is
desired. In any case, the user must understand what results are saved, which are not
saved, and those that are not saved but whose process-to-create is recoverable.

5) Create models of objects to be recognized and measured from imagery.

5.1) The basic need is interactive modeling packages that can be used to create
parametrized geometric object models from 1D and 2D splines, prisms, and
generalized cylinders. In one scenario, a developer draws a contour on an image,
extracts it and fits alD spline to it. Another contour is extracted and spline fit; but
now the ratio of of spline coefficients needs to be computed and stored, rather than
forcing the absolute numerical parameters in. Relational model parametrization is of
key importance; it is the ratios between parameters that get specified during the
interactive sessions. Statistics governing distributions of parameters can be
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interactively input, but may come from other routines (e.g. a database access of a
ground truth file of imagery or feature objects).

5.2) 3D models can be represented as an ordered, linked stack of 2D models, or
directly as a 3D volume, as with generalized cylinders, or, with loss of information, as
a surface map of polygons in 3-space with attachments. (Of course there are other
representations, but these are the three we are initially using in medical
applications.) In each representation the developer wants to view (projected)
instantiated models against data interactively, and to view displays of models as
parameters are interactively varied.

5.3) Geometric modeling proceeds by defining the primitive model components
and their spatial relationships, such as adjacency, affixments, joints, and parametric
relationships between axes and surfaces. It is convenient to have a modeling
language that allows specification of spatial operations as an algebra (another design
note).

5.4) Constraints are now modeled between geometric parts. Displays of tables of
numerical outputs and also of projected models are used to check constraint
propagation between model components are parameters are varied. For example, a
developer models the bones of the finger and their relationships and constraints, and
then checks the relative joint flexions by varying the angle of one joint and viewing
displays of the range of the other.

5.5) Population statistics may be presented as normal distributions and/or by
intervals. Constraints also can exist between these, so that when one distribution is
pegged at a fixed value (or small interval) based on observations, dependent
distributions are modified to ranges compatible with the observation and the
relationship with the first distribution. Statistics may need to be computed from a
training set, typically intended to be a random sample of the population being
modeled.

Assumptions: The environmental tools either are sufficient to access the
training set data, or the developer has some capability to access that data.

5.6) Now that the primitive model structures are understood, full part-of and is-a
hierarchical (inheritance) taxonomies are defined, and the complete structure is
created.

5.7) Operators are attached to the appropriate model nodes indicating parametric
relationships between the operator inputs and the model so that the operator can be
machine-instantiated at runtime to gather evidence supporting or denying the
presence of an instance of the model.

6) Develop matching operators that compare regions, features and measures with
segments of models.

6.1) The developer experiments with interactive parameter adjustment of models,
projection of 3D models into 2D predictions, and matching the predicted model against
extracted features and/or regions. There are two main matching approaches. The
first is identical to model instantiation: an extracted feature is fit to a model
component, e.g. a set of boundary pixels are fit to a 1D spline. In the second, a sensor
image acquisition model is applied to an (partly) instantiated 3D model from a
hypothesized perspective, and a geo-object is created that can be matched against the
geo-object implied by the region occupied by the imagery feature. This fitting
procedure can be supported by an appropriately applied least-squares-fit.

Assumptions: For each model primitive, there exists (a) method(s) to match it
against some type(s) of features and/or regions.

6.2) A key advantage of model-based reasoning is that constraints in instantiated
parts of models can be propagated to as yet uninstantiated values of model parameters
to focus predictions for further processing. Based on partial matches, the developer
now exercises the prediction mechanism to see the object localization implied by the
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partial match. This can be used to place values on operators, and as a guide to
refining models and model matching.

Assumptions: Computation and display of predictions is easy and relatively
rapid, and/or the development environment is multi-processing so that development
does not have to stop and wait long for prediction results.

7) Develop inference structures such as Bayesian networks or rule bases.

7.1a) Building of the Bayes net begins by choosing the set of models that
encompass the recognizable world (closed world assumption, with "other" category),
and constructing a model bayes net that associates model nodes together as the
competing hypotheses in Bayes nodes. (In the most general environment, there are
cleverly indexed databases that allow automatic Bayes net building by building
databases of conflicting models based on domain task applications.)

7.2a) Develop the conditional probability matrices between Bayes nodes based on
the discriminatory evidence about the IP and other evidence gathering operators as
described in step (5.7).

7.3a) Establish an initialization process that instantiates a (partial) Bayes net
based on a fixed set of operations that have high probability of success (e.g. the
medical hand-finder).

7.1b) Create a rulebase that captures model instantiations, evidence gathering,
and decision making (about termination, for example), based on relationships
between models and evidential matching results. The basic rule is of the form "If you
see X, then do Y.".

Assumptions: Rule syntax and inference engines accept as inputs the results
generated from evidence gathering operators, from statistical routines, and from
accessing the model objects.

7.2b) Ilteratively experiment with chaining in the rulebase based on alternate
initialization sequences to determine both the initialization processing, and
completeness of the rulebase.

8) Experiment with reasoning control strategies on the inference structures.

8.1) The developer iteratively changes the state of the Bayes net and/or rulebase
or other inference structure, then manually indicates the next processing step and
views the results.

Assumptions: Persistent data that the developer wants to save and reload to
experiment with reasoning control includes all models, results of IP, pattern
recognition, and grouping operators, matching methods, and Bayes nets and/or
rulebases. It is preferable to be able to save an intermediate state in Bayes net and/or
rulebase inference.

8.2) The developer runs automated processing routines such as a decision theory
evaluation routine, a metarule seclection strategy for multiple rule firings, or an
influence diagram algorithm (that incorporates the Bayes net.)

Assumptions: Reasoning control programs accept as inputs models, inference
structures and associated parameters.

8.3) The developer examines explanations of automated processing runs, and then
interactively alters models, inference and/or reasoning control.

Assumptions: Explanation facilities are available for each control strategy and
inference structure.

9) Craft the user interface and documentation to yield a natural vertical application
solution.
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9.1) Do task analysis, work studies and interface storyboards to determine the full
sequence of steps, relations between domain task operations, environmental and
operational constraints, resource constraints, required integration with other
products and/or data, domain user technology familiarities, typical enduser
occupational background and computer use capabilities (or phobias), and the uses
that output information is put to. '

Assumptions: The developer has access to view and analyze operational
environments in the domain application area.

9.2) Rapidly prototype alternate user interfaces, and let potential end users
experiment with the interface to uncover problems, design shortfalls, unexpected
data dependencies, etc.

Assumptions: The developer has access to candid, knowledgable, representative
and hardworking end users who have the time to evaluate the proto-interfaces.

9.3) Documentation for system is developed and tested on typical users both with
and without assistance. Without assistance results are used to modify the written
documentation so that assistance is unnecessary to easily run the system. With
assistance results are used to test the successfulness of the actual system functioning
under control of an enduser.

10) Test the (semi-) automated solution for robustness and reliability.

10.1) Determine approximately how many cases are required to establish
reliability in the accuracy of the product's output measurements, then run the
system over that many cases selected randomly from the population. Statistics need to
be gathered.

10.2) Test that each system component has correctly implemented the required
algorithms.

10.3) Establish software metrics for system reliability in terms of continuous
functioning, and test the system accordingly. Again statistics are gathered, including
timing and memory usage.
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\ppendix B Image Processing Source Librari

ALYV Toolkit

Contact: alv-users-request@uk.ac.bris.cs

Description:

Public domain image processing toolkit written by Phill Everson
(everson@uk.ac.bris.cs).  Supports the following:

- image display

- histogram display

- histogram equalization

- thresholding

- image printing

- image inversion

- linear convolution

- 27 programs, mostly data manipulation

BUZZ

Contact: Tehnical: Licensing:
John Gilmore Patricia Altman
(404) 894-3560 (404) 894-3559
Artificial Intelligence Branch
Georgia Tech Research Institute
Georgia Institute of Technology
Atlanta, GA 30332

Description:

BUZZ is a comprehensive image processing system developed at Georgia Tech.

Written in VAX FORTRAN (semi-ported to SUN FORTRAN), BUZZ includes algorithms
for the following:

- image enhancement
- image segmentation
- feature extraction

- classification
HIPS
Contact: SharpImage Software
P.O. Box 373

Prince St. Station
NY, NY '10012
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Michael Landy (212) 998-7857
landy@nyu.nyu.edu

Description:

HIPS consists of general UNIX pipes that implement image processing

operators.
operators.

They can be chained together to implement more complex
Each image stores history of transformations applied.

HIPS is available, along with source code, for a $3000 one-time
license fee.

HIPS supports the following:

simple image transformations
filtering

convolution

Fourier and other transforms

edge detection and line drawing manipulation
image compression and transmission
noise generation

image pyramids

image statistics

library of convolution masks

150 programs in all

LABO IMAGE

Contact:

Thierry Pun Alain Jacot-Descombes
+(4122) 87 65 82 +(4122) 87 65 84
pun@cui.unige.ch jacot@cuisun.unige.ch

Computer Science Center
University of Geneva

12 rue du Lac

CH-1207

Geneva, Switzerland

Description:

Interactive window based software for image processing and analysis.
Source code available. Unavailable for use in
for-profit endeavours.  Supports the following:

image 1/0
image display
color table manipulations
elementary interactive operations:
- region outlining
- statistics
- histogram computation
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- eclementary operations:
- histogramming
- conversions
- arithmetic
- images and noise generation
- interpolation: rotation/scaling/translation
- preprocessing:  background subtraction, filters, etc;
- convolution/correlation with masks, image; padding
- edge extractions
- region segmentation
- transforms: Fourier, Haar, etc.
- binary mathematical morphology, some grey-level
morphology
- expert-system for novice users
macro definitions, save and replay

Support for storage to disk of the following:
- images
- vectors (histograms, luts)
- graphs
- strings

NASA IP Packages

VICAR
ELAS -- Earth Resources Laboratory Applications Software
LAS -- Land Analysis System

Contact: COSMIC (NASA Facility at Georgia Tech)
Computer Center
112 Barrow Hall
University of Georgia
Athens, GA 30601
(404) 542-3265

Description:

VICAR, ELAS, and LAS are all image processing packages available from COSMIC, a
NASA center associated with Georgia Tech. COSMIC makes reusable code available for
a nominal license fee (i.. $3000 for a 10 year VICAR license).

VICAR is an image processing package written in FORTRAN with the
following capability:

- image generation

- point operations

- algebraic operations
- local operations

- image measurement

- annotation and display
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- geometric transformation
- rotation and magnification
- image combination

- map projection

- correlation and convolution
- fourier transforms

- Stereometry programs

"ELAS was originally developed to process Landsat satellite data, ELAS has been
modified over the years to handle a broad range of digital images, and is now finding
widespread application in the medical imaging field ... available for the DEC VAX, the
CONCURRENT, and for the UNIX environment." -- from NASA Tech Briefs, Dec. 89

"... LAS provides a flexible framework for algorithm development and the processing
and analysis of image data. Over 500,000 lines of code enable image repair,
clustering, classification, film processing,

geometric registration, radiometric correction, and manipulation of

image statistics." -- from NASA Tech Briefs, Dec. 89
OBVIUS
Contact: for ftp --> whitechapel.media.mit.edu

otherwise --> heeger@media-lab.media.mit.edu
MIT Media Lab Vision Science Group
(617) 253-0611

Description:

OBVIUS is an object-oriented visual programming language with somesupport for
imaging operations. It is public domain CLOS/LISP

software. It supports a flexible user interface for working with

images. It provides a library of image processing routines:

point operations
image statistics
convolutions
fourier transforms

POPI (DIGITAL DARKROOM)

Contact: Rich Burridge
richb@sunaus.sun.oz. AU
- or -

available for anonymous ftp from ads.com
(pub/VISION-LIST-BACKISSUES/SYSTEMS)

Description:

Popi was originally written by Gerard J. Holzmann - AT&T Bell Labs.
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This version is based on the code in his Prentice Hall book, "Beyond
Photography - the digital darkroom," ISBN 0-13-074410-7, which is
copyright (c) 1988 by Bell Telephone Laboratories, Inc.

VIEW (Lawrence Livermore National Laboratory)

Contact: Fran Karmatz
Lawrence Livermore National Laboratory
P.O. Box 5504
Livermore, CA 94550
(415) 422-6578

Description:

Window-based image-processing package with on-line help and user

manual.  Multidimensional (2 and 3d) processing operations include:
- image display and enhancement

pseudocolor

- point and neighborhood operations

- digital filtering

- fft

simulation operations

database management

- sequence and macro processing

Written in C and FORTRAN, source code included. Handles multiple
dimensions and data types. Available on Vax, Sun 3, and Macll
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Abstract

ADS is participating in the design of a DARPA Image Understanding Environment
(IUE). This report describes our contributions to designing the base classes, the
structure of the class hierarchy and the user interface. The design benefits the IUE
by allowing:

e Integration of the diverse concepts of IU within one environment.
¢ Rapid introduction of new users to the IUE.

e Organized extension of the base IUE by developers (including new users).
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Section 1

INTRODUCTION

This is the annual technical report on work performed by the Advanced Decision
Systems (ADS) Division of Booz-Allen & Hamilton (BAH) on the “An Image Un-
derstanding Environment for DARPA Supported Research and Applications” project
DACAT6-89-C-0023 during the period of September 26, 1990 to September 25, 1991.

The focus of activity during this period has been helping to design the DARPA
sponsored Image Understanding Environment (IUE). ADS and both its subcontrac-
tors, Georgia Institute of Technology (GT) and Stanford University, are participating
in this DARPA Image Understanding (IU) community design effort. The principal
design participants have been Mr. Douglas Morgan (ADS), Dr. Tod Levitt (ADS,
through September 1991), Dr. Daryl Lawton (GT), and Dr. Thomas Binford (Stan-
ford).

- The IUE will significantly advance the state-of-the-art in environments and de-
velopment frameworks. Central to this advancement is the capability to seamlessly
integrate the numerous concepts of IU into one system, to easily introduce new users
to the system, and to extend the system in multiple new directions. Our work has
focused on providing these capabilities with a class hierarchy clearly embodying 1U
concepts and a user interface allowing complex interactions to be simply expressed.

During previous reporting periods, the ADS/GT team designed a Vision Environ-
ment system and developed a prototype for a Sun workstation in C++-. Plans were
made for significant improvements to the ADS Vision Environment system prototype.
However, the current reporting period began with a large cut in contract funding, leav-
ing only enough support for scaled back design activities. At that time it was clear
that further design activities would achieve the greatest impact if oriented toward in-
fluencing the emerging DARPA IUE design. Transitioning the Vision Environments
design to the IUE and then continuing to refine the design would lead to the tangible
result of a better IUE system end product. Like the Vision Environment system, the
DARPA IUE is intended to facilitate the transfer of technology from the DARPA IU

community into industrial, military, and commercial applications.
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The IUE design is primarily being designed by a group of ten DARPA IU community
representatives from industry and academia. The design group consists of:

Joe Mundy (Chair) - GE
Thomas Binford - Stanford

Terry Boult - Columbia

Al Hanson - U Mass

Bob Haralick - U of Washington
Charlie Kohl - AAI

Daryl Lawton - Georgia Tech
Douglas Morgan - ADS

Keith Price - USC

Tom Strat - SRL

The design efforts by ADS, GT, and Stanford representatives have been funded largely
through this contract. Prior to the formation of the design group, several meetings
(open to the DARPA IU community) were held to refine the IUE goals and devel-
opment strategy. During this period, Tod Levitt was instrumental in transitioning
the Vision Environments design and design concepts into the IUE and in shaping
the direction of the IUE design to initially focus on specification of a comprehensive
class hierarchy. Presentations were also given by Tod Levitt and Daryl Lawton at
the 1990 IU Workshop. One presentation reviewed the Vision Environments design
and prototype development. The other described the functionality that a modern
IUE should provide. Rand Waltzman and Oscar Firschein have been the DARPA

program managers for the IUE effort.

This document describes the inputs of ADS team to the IUE design. These inputs
were primarily in the definition of portions of a class hierarchy for the IUE. ADS
was primarily responsible for Object Abstraction (the root classes of the hierarchy).
GT was responsible for User Interfaces. Stanford provided support for both areas
and additional inputs for Image Features. ADS also has acted as a liaison between
the IUE design committee and the DARPA Open Object-Oriented Database project
being carried out by Texas Instruments. All three organizations, with GT taking the
lead, have helped refine the initial concepts for general spatial objects.

This document contains four sections. Section 2 provides background for the design
goals and choices of the last two sections. Section 3 describes the Object Abstraction
inputs to the IUE design. Section 4 describes the User Interface inputs.




Section 2

Background and Design Principles

The inputs of the ADS team to the IUE design are based on extensive experience in
applying object-oriented techniques to IU. This chapter briefly describes some of the
systems with which we gained this experience and presents several high-level design
principles we have found to be critical to success.

The ADS inputs to the IUE design are based on experience in developing several
generations of Object-Oriented class hierarchies and systems for Image Understanding
(IU). These systems include:

e Vision Environments. This system was designed and prototyped during the
first year of this contract. It was aimed at achieving high portability and cost
effectiveness through use of C++ and off-the-shelf class libraries and tools. The
design contained a early versions of spatial objects. The prototype integrated
the Interviews class library with image handling, image display, and relational
database access.

¢ Sensor Algorithm Research Expert System (SARES) Testbed—CLOS
Version. This system has been under development with Wright Laboratories
and DARPA since 1986. It integrates 3D objects, imagery, feature extraction,
interpretation networks, Bayesian Networks, stochastic coordinate transforma-
tions, a multiple hypothesis (multiple worlds) mechanism, rule-based control,
user interface (with image display, rendering, graphic overlay, network display,
tables, and plots). This system addresses requirements, spanning: IU, environ-
ments, physical modeling, sensors, estimation, detection, classification, infer-
ence, user interfaces, and information management. Beginning about two years
ago, ADS began a major reorganization of the Testbed to unify the approach of
providing this wide range of capabilities. Since then, we have made major revi-
sions to the testbed to make it reflect a more integrated view. The experience
gained here has been a significant factor in the ADS inputs to the IUE design.
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e Sensor Algorithm Research Expert System (SARES) Testbed— C++
Version. An effort is currently underway to convert a portion of the CLOS

SARES Testbed to C++ .

e View. View, initially created in 1988, is an extensible class hierarchy (with
efficient iteration macro environments, or “IU constructs”) for image and image
feature objects. It is an outgrowth of Powervision (see below), made with the
goals of porting Powervision from ZetaLisp to CommonLISP and of separating
the IU processing aspects of Powervision from the interactive user environment
aspects. It supplies constructs for efficient iteration over all its spatial objects
(images, edges, edges-lists, regions, etc.). Having been used on more than ten
ADS projects, including SARES, View has influenced our contributions to image
designs and efficiency considerations.

e Powervision. Developed and extended by Daryl Lawton while at ADS, Pow-
ervision is one of the first object-oriented IU environments. It is written in
ZetaLisp/Flavors for the Symbolics Lisp Machine. A distinctive feature of this
system is the extensive use of databases for library functions, processing results,
and processing history.

e ADS IUlab. This is a system of abstract data types (ADTs) in C for types such
as Image, Region, ConnectedComponent, ContainmentTree, and Table. This
1985 system implements strict ADTs in C, documenting the few nonfunctional
(side-effect or procedural) access paths to object internals. It supports all C
primitive numerical types (e.g. unsigned short and double) with typing macros.
It supports different boundary handling techniques: reflection, constant value,
and border value. To address memory constraints of early VAX systems, an Im-
age can be read/created in any of three modes for disk buffering: all in-memory,
read rows from disk on demand (with iterators making transparent access to
disk), and read rows from disk on demand with back-up to a temporary disk
file. This system also influenced our contributions on efficiency considerations.

With each system experience was gained in development, performance, training,
portability and maintenance. Our proposals for the IUE design have been aimed at
using the design principles distilled from these developments to arrive at a widely
useful IUE. The issues in class hierarchy design that we considered include:

e Aggregating names for similar concepts. To ease training and mainte-
nance, a system should consistently name implementations of similar concepts.
An example from CommonLISP where naming is not consistent is the set of
access functions for the various attribute/value data structures. These access
functions include: aref, assoc, elt, get, getf, gethash, nth, nthedr, rassoc, and
slot-value. Although these all do the same conceptual operation (evaluate an
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index/value association), there are functions with ten different names and the
order of arguments changes unpredictably between functions. Without con-
scious steps to aggregate names, the IUE could easily generate many dozens of
more names for the same operation. A tightly knit class hierarchy is an excellent
way to encourage consistent naming in the IUE.

e Specifying precise semantics. To make it possible to do up-front design and
to write comprehensive test suites, the class documentation needs to precisely
define the over-time and between-object behaviors of objects. It is especially
important to document what to expect for identity, creation, destruction, copy-
ing, assignment, equality, persistence, and mutation of objects. Consistency
of these aspects of object behavior will greatly affect the ability to integrate
contributions from a distributed set of developers.

e Taking a set- and relation-theoretic approach. We find that sets, relations
(tuple sets), functions (functional relations), and networks (sets of relations)
are fundamental to many aspects of the SARES Testbed and our other IU
environments. These aspects include:

o Databases (set of relations)
o Bayesian Networks (set of conditional probability relations)
o User interface (sets of object-display-action relations)

o Coordinate system networks (sets of coordinate transform functions)

(o]

3D models (sets of attachment relations)

(o]

3D primitives (sets of points)

By capturing this commonality in a single set-theoretic class hierarchy, names
for concepts are tightly aggregated and much of the system’s semantics can be
specified for just one class and reused many times without change. A single
narrow-rooted class hierarchy also allows the objects of a strongly typed lan-
guage (such as C++) to participate in a wide range of activities defined along
the trunk of abstract set-theoretic classes.

Although we had earlier recommended that C++ be the sole delivery language for
the Vision Environment system, for the IUE a mix of CommonLISP and C++ is
a requirement. CommonLISP adds the significant advantages of automatic garbage
collection, dynamic compilation, dynamic loading, interpreted operation, and exten-
sive support for multiple inheritance. These factors, in addition to the reliance of
many DARPA IU contractors on CommonLISP, will help with timely construction of
robust software for complex IU applications.




Section 3

Object Abstraction

This chapter presents the Object Abstraction inputs to the IUE design. These
inputs have been incorporated into the IUE design document produced by the IUE
design committee and into the IUE Overview paper presented at the 1992 DARPA
IU Workshop.

3.1 Overview

Object Abstraction for the IUE lays out the trunk of the class hierarchy and pro-
poses software development guidelines. Its aim is to smooth the way for independently
developed IUE components to work together. The IUE class hierarchy is organized
around a single root class (Object), a metaclass (Class), and a core set of classi-
cal mathematics, physics, and information processing related classes. Guidelines for
extending the class hierarchy are also included.

The IUE will be a large and extensible system jointly developed at numerous sites
throughout the country. Bringing order to the IUE build will require one specific class
hierarchy and one specific set of design principles. This will provide coordination well
beyond the generic practice of “object-oriented programming” or “O0 design”. The
hierarchy and design principles of the IUE must support the built-in IUE capabilities
and accommodate new additions. A good foundation will keep the overall costs of
building the IUE down and will improve chances for a successful, robust system.

Object Abstraction aims to help developers provide consistent capabilities and
names for classes and methods. It also aims to ensure that capabilities are comprehen-
sive and logically arranged with well-defined paths to obtaining maximal efficiency.
The overall effect is to allow each new development to be added to the class hierarchy
at the logically correct point (rather than, for example, making a new incompatible
class hierarchy or work with none at all).

Object Abstraction is essentially one Object class, one Class class, a Collection class
hierarchy, and design/programming guidelines for the IUE build. These foundation
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Figure 3-1: Object Hierarchy Outline.

classes define an extensive set of methods for interacting with environment-level tools,
for tailoring specialized classes via parametric hooks, and for consistently accessing
common mathematics and physics operations. Figure 3.1 outlines the class hierarchy.
The figure is an outline of abstract classes: the IUE will have more classes to provide
various implementations of the classes shown in the figure. Also, aspects such as
name choice, specific inheritance paths, and the use of multiple inheritance are being
further refined.

3.1.1 Object and Class

Together, Object and Class define the environment-level behavior shared by all
objects. All IUE classes inherit from Object and are associated with a unique instance
of the class Class. These classes allow the environment to examine instances and
configure operations (especially I/0, copy, and display/editing) based on different
types and classes. This two-class approach is closely aligned with systems such as
CLOS, Smalltalk, and the National Institute of Health C++ Class Library. Applying
the approach to C++ requires substantial infrastructure and discipline, but will be
valuable in organizing the IUE and providing powerful interactive capabilities.




3.1.2 Math, Physics, and Information Processing Classes

The math, physics, and information processing classes represent such fundamental
concepts as images, extracted features, world objects, pure geometry, transformations
(including coordinate systems), sensors, sets, sequences, relations, and networks of
relations. The Collection class is basic to much of the class hierarchy.

Collection is parameterized with functions (including equivalence, insert compati-
bility, and union compatibility) so that it can cleanly specialize in multiple directions:
¢ Finite, countably infinite, and uncountable (at least conceptually so) numbers
of elements
o Object-valued or language-primitive-valued (e.g., int) element types
e Constraints on types or values of elements to be inserted.

Early versions of the IUE design had nearly every class branching of the trunk on
Figure 3.1 inheriting directly from Object. The current designs enforce much greater
uniformity among important mathematics and physics classes by moving them to
more meaningful positions further down the class hierarchy.

3.1.3 Development Guidelines

The development guidelines of Object Abstraction include:

e A dictionary of translating between terminology for C++ , CommonLisp, and
standard OOP.

e Naming conventions for methods — these specify such characteristics as return
type, inlining, image boundary handling, immutable versions, etc.

e Notions of abstract type and implementation hierarchies embedded in the class
hierarchy — this separates method definitions from slot definitions so that
highly constrained objects far down in an inheritance hierarchy can have the
union of all supertype methods names without carrying around extra slots de-
fined in many unrelated implementations of supertypes.

o Use of source preprocessing tools to aid C++ development.

e Use of persistent object techniques.

o Views of objects — views objects wrap around other instances to change the
apparent set of methods or interface (e.g., a view is a low-cost and consistent
way of creating a vector-valued image from a sequence of images and visa versa).

The guidelines aim at producing efficient class hierarchies free of semantic conflicts
on methods or slots (i.e., potential conflicts due to multiple inheritance are not left
chance).




3.2 Classes and Conventions

This section shows how the IUE class hierarchy is organized around a single root
class (Object), a single metaclass (Class), and a variety of math and physics oriented
classes. Object and Class work together to define the environment-level behavior
shared by all objects. The math and physics classes define the fundamentals of
world objects, relations, sensing, networks, and image understanding. Classes for
I/O channels and display/interaction devices are not covered.

To help with the organization of a powerful and uniform environment, we propose
effective approaches for several areas, including:

¢ Vocabulary for the object system (especially since we use both C++ and CLOS
in the IUE)

e Capabilities that all objects share

e Tools to mechanically generate code required by the environment (such as for
class object creation, instance copying, and 1/0)

® Naming conventions (especially with regard to how names map into combi-
nations of auxiliary concepts such as inlining, declaring the return type, dy-
namic binding, static binding and function name overloading, mutable versus
immutable objects, free versus member functions)

e Hierarchy that introduces math and physics related methods early on in a few
central classes (e.g., hasMember for a collection can be used many levels down
in the hierarchy to test whether a point is inside 3D object). The hierarchy
defines the primary interfaces for each ob ject type (declaring, for example, that
an Image has primarily a functional interface rather than that of a kind of 3D
object with pose.)

® Parametric freedoms allowing the Collection class to be specialized to such
diverse objects as sequences of arbitrary Objects, unsigned char valued arrays,
and procedurally defined Functions

o Network classes sufficient for managing constraints, relational databases, and
Bayesian inference networks

* Abstract classes for separating method interfaces defined for a class from the
internal representations used by instances. This is needed so that highly con-
strained objects far down in an inheritance hierarchy do not have to contain the
union of slots for all the complex, less constrained ob jects above.
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e View objects for resolving method name conflicts that arise when two logical
views of one instance would naturally use the same method name, but for dif-
ferent purposes.

Each of the above issues is now addressed.

3.2.1 Vocabulary

Table 3-1 lists C++ and CLOS names for approximately equivalent concepts. The
table also lists our preferred usage in the left column.

3.2.2 Common Capabilities

The capabilities common to all classes are organized around a single root superclass
and a metaclass (a class whose instances each describe a unique class). The approach
using these two classes is very close to that followed by CLOS, the C+4 National
Institute of Health Class Library (NIHCL) and Smalltalk. Applying the approach to
C++ requires considerable discipline. For CLOS, it is relatively easy.

We base all IUE classes on a single root superclass, Object. There are at least two
strong arguments doing so. First, in OOP, this is a natural way to be sure that every
instance has at least the minimum interface to interact with the standard tools of
the environment. Second, without a root Object class, the strong typing of C++,
forces the use of parameterized versions of subclasses of Collection to store instances
from each disjoint inheritance hierarchy. Storing instances from disjoint inheritance
networks in one collection requires type-violating casts.

We have also chosen to define one class (a metaclass) whose instances represent
the characteristics of some other class. An environment often needs to examine the
structure of an object and choose operations based on different types and classes. As
C++ provides no default way to query an instance about its class, we define one.

3.2.3 Code Generation

It is critical to make creating a new class easy. In C++, this almost certainly implies
tools to scan *.h files and mechanically generate code for such activities as creating
a class object, and defining the virtual functions supporting instance copying, I/0,
display, editing, etc. Although this section points out the need for such tools, it does
not present their design.
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Table 3-1: Vocabulary Choices for Object-Oriented Programming

Concepts.

Preferred Names

| Other Names and Usages

Virtual Function

Generic Function (with Dispatch on Only First Argu-
ment), Message, Virtual Member Function

Generic Function

Multimethod, Would be a Virtual Function on more than
One Argument (This Restricted Notion of Generic Func-
tion is Nonstandard, but Makes Clear a Useful Distinc-
tion.)

Instance Object
Class No Other Name
Method Virtual Function Definition

Call a Virtual Function

Send a message

Call a Generic Function

Method Dispatch

Self

First Argument of a Generic Function

Method Combination

Daemons (no built-in C++ analog)

Superclass

(Virtual) Base Class (C++ and CLOS Handle Conflict-
ing or Ambiguous References to Slot and Methods Dif-
ferently)

Direct Superclass

Direct Virtual Base Class

Indirect Superclass

Indirect Virtual Base Class

Subclass

Derived Class

Direct Subclass

Direct Derived Class

Indirect Subclass

Indirect Derived Class

Nonvirtual Base Class

No good CLOS Analog

Abstract Class

Mixin (Eiffel uses Deferred Class)

Nonvirtual Member Func-
tion

Statically Bound Member Function (CLOS does not di-
rectly support static overloading of function names. Also,
CLOS on specializes on a fixed number of arguments for
all methods)

Slot

Member Object, Instance-Allocated Slot (bInstance Vari-
able

Static Member Object

Class-Allocated Slot (Smalltalk uses Class Variable)

Free Function

No Other Name

const Object

Immutable (no associated CLOS syntax)

inline Function

Macro Expanded or Inlined
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3.2.4 Naming Conventions

We use several naming conventions in this section. The conventions (adapted from
X-Windows standards) are:

e The main part of class names begin with a capital letter. Class names with
multiple words are concatenated with each word capitalized. Sometimes modi-
fiers, such as component datatype names, are appended to the main part after
an underscore. An example class name is SomeKindOfImage_int.

o Slot names are all lower case and, if multiple words long, have words separated
by single underscores. An example slot name is this_is_a_slot.

e Function names have the following format (bracketed items are optional):
mainPart[_Return Type] [-PostfitModifier]

e The return type of a function may be specified by name after the main part of
a function name and before the postfix modifiers.

e Postfix modifiers of function names are (at least) of the form: -
[-[[n]c]C[n]il [[n]m] [[n]v]]

where:

o n - Not

o ¢ - Const (funcfion does not modify first argument’s value)
o i - Inline

o m - Member Function

o v - Virtual

e The characters <T> can be freely replaced with the name (possibly using an
encoding scheme) of any standard C++ or Lisp datatype (e.g., unsigned.char
or double).

The postfix modifiers allow the developer to consistently name the multiple different
functions (up to 16 for one mainPart name) that perform one logical task, but satisfy
different requirements for speed, safety, time of binding, and ability (in C++) to
reference functions by pointer. (Actually, the “member” and “not member” options
are redundant since C++ allows both types of functions to be named identically
and still be uniquely referenced using “::” syntax.) Other modifiers options can be
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added to indicate choices such as image access boundary handling (e.g., no checking,
reflection, wrapping, default value).

The postfix modifiers have no defaults. That is, the exact meaning of an unadorned
function varies from function to function. The designer is free to choose the unadorned
name for the most commonly used version of the function. The n option can negate
any of the c, 1, m, or v options implicitly chosen for the unadorned function.

In C++ and CLOS, the return type of a function does not enter into the generic
or virtual function method dispatch calculation. For efficiency, we often want to
have logically similar functions be implemented completely differently depending upon
desired output types. E.g., an inline method that returns a char from a char array
object could be many orders of magnitude faster than a similar method that returns
an instance whose state represents a char. The naming conventions address this need
with the ReturnType portion of the function name.

The methods chosen to be defined in this section do not use postfix modifiers.
Modifiers will be important to the final IUE, but are not essential to the presentation
of an overall logical design.

3.2.5 Hierarchy

The class hierarchy (of Figure 3.1) includes the root Object class, the Class class, and
math and physics related classes. The figure shows the hierarchy only to depths where
it touches the top level classes being designed by other organizations represented on
the IUE design committee. The hierarchy shows that an Image inherits from Array,
Function, Relation, Set, Bag, Collection, and Object. This structure prescribes a host
methods for Image. The definitions of many methods will be inherited, the remainder
are supplied by the implementations of Image and its subclasses.

3.2.6 C(Collection Class

The Collection class is basic to much of the hierarchy. It must cleanly specialize in
multiple directions. Different subclass need to represent

e Finite, countably infinite, and uncountable (at least conceptually so) numbers
of elements

o Object-valued or language-primitive-valued (e.g., int) element types

e Constraints on types or values of elements to be inserted.

Parameterization by two functions makes Collection sufficiently flexible. These func-
tions are the equivalence function and insert compatibility test. Additional useful
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parameterizations are a union compatibility test (actually derivable from the insert
compatibility test) and a potential constraint on element type.

3.2.7 Network Classes

Relational databases, Bayesian networks, function composition networks, and con-
straint networks are all networks for managing joint information over a set of at-
tributes. The structures necessary to properly support these networks extend well
beyond the usual undirected and directed graphs of links and arcs connecting two
nodes at a time. (We choose to use “link” rather than “edge,” the standard, to avoid
clashing with the image related usage of “edge.”) Of particular importance are gen-
eralizations of links and arcs to connections between sets of nodes. These are the
hyperlink, or set of nodes, and what we will call the hyperarc, or directed pair of
sets of nodes. A set of hyperlinks forms a hypergraph and a set of hyperarcs forms
what we will call a dihypergraph (directed hypergraph). Also necessary are attributes
(nodes) with their domain sets. Further, a structure at the heart of efficient inference
and query algorithms is the Join tree of hyperlinks (undirected tree of hyperlinks with
the intersection of any two hyperlinks contained in every hyperlink in the connecting
path).

3.2.8 Abstract Classes

In this description of the hierarchy, Collection and its subclasses are abstract classes.
That is, classes that define method name and signatures, but do not provide slots
and implementation. This allows objects of widely varying implementation but iden-
tical interface to be created with no superfluous per-instance overhead. As the IUE
develops, the hierarchy will be filled in with multiple subclasses supplying specific
implementations for each abstract interface.

3.2.9 Views

With a complex hierarchy built largely on sets, relations, and functions, it is in-
evitable that one logical view of some class will involve a set, relation, or function
interface, but not in the way implied by the inheritance hierarchy. For example, the
inheritance defined view of a BayesNet is as a directed hypergraph with set-like inter-
face to a structured set of Hyperarcs. Because a BayesNet can logically be viewed as a
joint probability density (a function), it could also have a set-like interface to a struc-
tured set of Tuples (mapping random variable values to real numbers). A View object
would wrap around the BayesNet instance and convert the Set interface methods of
union, insert, etc. to operate on the set of Tuples instead of the set of Hyperarcs.
We propose that view creating methods (such as asFunction) be provided as needed




15

to wrap instances with new instance with modified interfaces. The view objects of
Interviews are similar to our View objects, but they are used only to redefine the user
interface methods of an object instead of any set of methods. This section will not
specify view objects other than to say that there will be many view subclasses and
their use should be an integral part of the environment.

3.3 Hierarchy Class Definitions

3.3.1 Object

The Object class is the root superclass of all classes in the environment. In conjunc-
tion with the Class metaobjects, Object specifies the interface for the environment-
level operations that apply across all instances. These operations include:

e I/O

e Display and hardcopy

e Type queries

o Equality queries (default equivalence function)

e Copying (multiple semantics)

e Mutability and locking control

e Environment queries (version, source code, object code, documentation)
o Inspecting and editing

e Memory management (to be specified)

o Persistence (to be specified).

Table 3-2 presents the method signatures (i.e., names, input types and output
types) for Object. Table 3-3 expands the signatures to include documentation of each
method.

3.3.2 Class

A Class describes an object class. Each class has a corresponding unique Class
instance. Table 3-4 shows the method signatures and Table 3-5 shows the definitions.




Table 3-2: Object Method Signatures.

Name | Tnput Types | Output Types |
newLike O Object
copy () Obj:Object
deepCopy O Obj:Object
shallowCopy O Object
deepenShallowCopy | (Object) Object
classOf O Class
isSame (Object) .Boolean
isKindOf (Class) Boolean
species () Boolean
isSpecies (Object) Boolean
isUnique O Boolean
islmmutable () Boolean
changeTolmmutable | () Status
isLocked () Status
lock O Status
unlock () Status
destroy 0 Status
deepDestroy () Status
reset O Status
isEqual (Object) Boolean
display (Displayable) | Status
inspect () Status
edit () Status
describe (OStream) Status
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Table 3-3: Object Methods Definitions

r Name Input Types Output Types
newLike 0O Object
Make a new instance of the same class as self and load with default values.
copy O Obj:Object

The “natural” copy. Make a new instance of the same class as self. Copy “shal-
lowly” those slots that expect address equality or whose objects are immutable. Copy
others “deeply.” Further, copy is free to change the internal structure as long as
self->isEqual(Obj) would be True if executed and value of a mutable object is not
stored by copying the mutable object’s address.

deepCopy O Obj:Object
Make a new instance of the same class as self, copy non-pointer values from self to
Obj, and set all internal pointers of Obj to deepCopy’s of what self points to.

shallowCopy O Object
Make a new instance of the same class as self, copy non-pointer values from self to
Obj, and set all internal pointers of Obj to point where the internal pointers of self

point.

deepenShallowCopy (Object) Object

Turn a shallowCopy’ed instance into a deepCopy’ed one. Method used by deepCopy.
classOf O Class

Return the Class instance corresponding to the class of self.

isSame (Obj:Object) Boolean

Return True iff self and A are Obj are identically the same object (same address).
isKindOf (c:Class) Boolean

Return True iff self is an instance of the class ¢ or its subclasses.

species O Boolean

Return the class (often abstract) in the hierarchy that defines the semantics of the
state of self.

isSpecies (Obj:Object) Boolean
Return True iff self and Obj are of the same species.

isUnique ) Boolean
Returns True iff self is the only object that can obtain its current state.

isimmutable () Boolean

Returns True iff the apparent state of self can never (again) be changed with the
object interfaces. Once self->isImmutable() returns True, it should always return
True.

changeTolmmutable () Status
If possible, change the state of self so that self->isImmutable() will return True.
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Table 3-3: Object Methods Definitions (cont’d)

| Name Input Types Output Types

isLocked O Status
Return True iff the apparent state of self cannot currently be changed with the object

interfaces.

lock () Status

If possible, change the state of self so that self->isLocked will return True.
unlock 0 Status

If possible, change the state of self so that self->isLocked will return False.
destroy 0 Status

Destroy self.

deepDestroy O Status

Recursively destroy self and all its contained objects where what is “contained” is
class-specific.

reset () Status
Reset state of self to the class-specific default.
isEqual (Obj:Object) Boolean

isEqual forms the species-specific “natural” equivalence relation between instances.
It returns True iff self and Obj are “equal”.

display (D:<Displayable>) Status

Display self on D.

inspect O Status

Initiate the interactive inspection of self.

edit 0 Status

Initiate the interactive editing of self.

describe (Out:<OStream>) Status

Describe self on Out.

name () String

Return the name of the class referred to by self

directSuperclasses () Set

Return the set of class instances of the direct superclasses of class referred to by self.
superclasses () Set

Return the set of class instances of the superclasses of class referred to by self.
directSubclasses () Set

Return the set of class instances of the direct subclasses of class referred to by self.
subclasses (0 Set

Return the set of class instances of the subclasses of class referred to by self.
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Table 3-3: Object Methods Definitions (cont’d)

|

Name Input Types Output Types

members () Set

Return a set of slot and function descriptors describing the class referred to by self.
A descriptor should include name, slot or function, type, signature (if describing
a function), access restrictions, file name where function is defined, whether static
or class-allocated, etc. Building descriptors requires parsing code (or perhaps using
symbol table information).

headerFile () FileName
Return the file defining the class referred to by self.

version O Version
Returns a version number or name for the class referred to by self.

Table 3-4: Method Signatures

[ Name [ Input Types | Output Types l
name 0O String
directSuperclasses | () Set
superclasses () Set
directSubclasses | () Set
subclasses () Set
members () Set
headerFile O FileName
version () Version




Table 3-5: Method Definitions

Name Input Types Output Types
name 0 String
Return the name of the class referred to by self
directSuperclasses () Set
Return the set of class instances of the direct superclasses of class referred to by self.
superclasses () Set
Return the set of class instances of the superclasses of class referred to by self.
directSubclasses () Set

Return the set of class instances of the direct subclasses of class referred to by self.

subclasses () Set
Return the set of class instances of the subclasses of class referred to by self.

members 0 Set
Return a set of slot and function descriptors describing the class referred to by self.

A descriptor should include name, slot or function, type, signature (if describing
a function), access restrictions, file name where function is defined, whether static
or class-allocated, etc. Building descriptors requires parsing code (or perhaps using
symbol table information).

headerFile () FileName
Return the file defining the class referred to by self.
version 0O Version

Returns a version number or name for the class referred to by self.




3.3.3 Collection

A Collection represents an object that “collects” or “contains” other objects. The
collection class specializes to many classes including Bag, Set, Relation, Function, and
Image. A raw Collection has axioms that allow for remembering duplicate elements
and insert order. A Bag adds an axiom that makes it impossible to remember insert
order. A Set adds an axiom that makes adding an element many time the same as
adding it only once. Other subclasses add axioms to restrict the types of elements
that can be added (e.g., Tuples with instance-specific schema for relations) and vary
the notion of equivalence between elements (e.g., a IdentSet would check the address
of instances while an IntSet would check for the numerical value of instances or
primitive datatypes.) Table 3-6 presents the signatures of a minimal set of methods
for Collection.

Elements must satisfy insertCompatible to be valid arguments to insert. Other
collections must satisfy unionCompatibleto be valid arguments to union, intersect,
etc. Many subclasses of Collection do not have to to check for argument compatibility
since any argument that passes static type checking (or dynamic dispatching) will be
acceptable.

A fundamental property of each collection is its equivalence function (equivalen-
tArgs) for determining if two objects are equal for all purposes of the collection. A
collection is best thought of as containing abstract elements rather than objects them-
selves (only when the equivalence function is object equivalence not a more general
function of internal state). An element should be thought of as naming the abstract
object equivalent to the instance. For example, a collection does not necessarily “re-
turn” the same instances (as chunks of memory) that are inserted, it can return any
equal (under the equivalence function) objects. Also, any two sequences of operations
differing only by substitution of equivalent instances and ending in a “isMember” or
“isSubset” type of test will yield identical test results.

Equivalence relations allow collections to be extensible and highly efficient. For
instance, suppose that “object value” is the equivalence relation for a certain set.
Then, the collection does not guarantee that an object, once inserted, can ever be
recovered. The class simply guarantees that an object of the same value can be
recovered. Specialized collection classes may be then able to use efficient memory
schemes (like arrays) to minimize storage and to speed computation. It can also
considerably reduce the work required of a persistent storage system. Only values
needed to copy objects (not objects themselves) have to be stored, thus eliminating
the overhead of maintaining persistent UID’s. The option for storing memory-objects
is always available by making the equivalence function be #'EQ (or &a == &b).
Cartesian product equivalence functions are used for relations and functions. This
unifies numerous data types often treated more independently. Examples include




Table 3-6: Collection Method Signatures.

1 Name Input Types Output Types |
equivalentArgs (Object, Object) Boolean
unionCompatible (Coll:Collection) Boolean
unionCompatible (Primitive:<T>) Boolean
insert Compatible (Obj:Object) Boolean
insert Compatible (Primitive:<T>) Boolean
isSingleton () Boolean
isEmpty () Boolean
isFinite () Boolean
isCountable () Boolean
isCountablylnfinite | () Boolean
isUnCountable () Boolean
cardinality () int
cardinalityl () Cardinal
hasMember (Obj:Object) Boolean
hasMember (Primitive:<T>) Boolean
disjoint (Coll:Collection) Boolean
isSubset (Coll:Collection) Boolean
insert (Obj:Object) Collection
insert (Primitive:<T>) Collection
remove (Obj:Object) Collection
remove (Primitive:<T>) Collection
removel (Object) Collection
removel (<T>) Collection
union (In:Collection) Out:Collection
difference (In:Collection) Out:Collection
intersection (Collection) Collection
relativeComplement | (Collection) Collection
symmetricDifference | (Collection) Collection
choosel (Collection) (Object Boolean Collection)
choosel (Collection) (<T> Boolean Collection)
map (Collection, func,Class) | Collection
map (Collection, func,Class) | Collection
mapc (Collection, func) void
mapc (Collection, func) void




23

numerical arrays, object arrays, hashtables, relational tables, and procedurally defined
functions.

If the equivalence function is object identity (which we will call the object eq), then
the actual instance inserted into the collection has to be retrievable/testable. If the
equivalence function allows different objects with the same “values” to be equal, then
there is no guarantee that the instance inserted is actually stored (e.g., a relational
table will generally disregard an inserted tuple object after the tuple’s field values have
been extracted and stored in a relation-specific internal form). An equal-collection
cannot rely on storing a mutable object as the sole memory of an insert as the object
could mutate and no longer denote the same value it did at time of insert.

Persistent collections introduce further considerations (e.g., a persistent eq-collection
can contain only persistent objects). A set of consistency rules and implementation
possibilities are as follows:

e persistent eq-collection => elements must persist

e eq-collection = can use any object reference (e.g., persistent Object ID (OID)
or pointer) for representing elements in working storage

e equal-collection and immutable element = can use any object reference or any
equivalent data for representing the element in working storage

e equal-collection and mutable element = element must be “copied” into im-
mutable equivalent data for working and/or persistent storage

e persistent eg-collection = must use OID for representing elements in persistent
storage

e persistent equal-collection and immutable element = can use OID (if available)
or data for representing element in persistent storage.

o persistent equal-collection and mutable element element must be “copied” into
immutable equivalent data for working and/or persistent storage

3.3.4 Bag

A Bag is a collection of order independent elements with meaningful duplicates.
The method signatures are unchanged from those of Collection.

3.3.5 Set

A Set is a collection of order independent elements with duplicates meaning the
same as only one. The method signatures are unchanged from those of Collection.
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3.3.6 PointSet

A PointSet is set of points in an n-dimensional Euclidean space.

3.3.7 PointSpace

A PointSpace is an n-dimensional Euclidean space. Abstract points in PointSets can
be arbitrarily subtracted to form vectors. Vectors can be added to points. Elements
of base PointSets have no scalar multiplication operator and only barycentric addition
(coefficients sum to one). Elements of base PointSets are abstract, without methods
for coordinate representation, default point frame, or default vector basis. (They can
be, for instance, abstract handles to locations in the real world.) The base PointSet
class is specialized in different ways to get many important classes. Through different
types of specialization, instances of subclasses may have:

e Specific embedding dimensions (dimension of the PointSpace containing the
PointSet).

¢ Specific embedded dimensions (manifold dimensions of the PointSet itself).

¢ Points with associated coordinate representations (with respect to a distin-
guished frame per instance).

o Vectors for elements. There is a distinguished origin per instance, and new
operators are defined. These include multiplication by a scalar, vector addition,
inner product, and (for three-dimensional vectors) cross-product.

o An interpretation as a specific physical concepts (e.g., physical space, time,
space-time, image pixel locations, window pixel location, viewport space, screen
locations, color space, spline function space).

Such specializations include: Frame, Basis, Interval, Region, Volume, Timelnter-
- val, DurationInterval, ScreenFrame, ColorBasis, TimeFrame, VectorSubspace, Coor-
dinatePointSpace CoordinateVectorSpace, and TriangularFacet.

A potentially useful way to specify the class of points that are elements of a PointSet
is to identify singleton sets with points. With this, operations automatically generalize
from points to sets of points and there is no need to define classes both for sets of
points and for points themselves. This meriology is the most common method of
treating schemas in the database literature. Also, Wand has suggested it as part of a
general approach to modeling real things.

A request for a change of basis (change of frame) includes the new basis (frame) for
the coordinate representation. This is different from a transformation operation that
keeps the same basis or frame (if one is used at all). Dynamic type checking should
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Table 3-7: Additional Relation Method Signatures

| Name | Input Types | Output Types |

join (Relation) Relation
relationalDivide | (Relation) Relation
select (Expression) Relation
select (Function) Relation
projectOn (Set) Relation
project Off (Set) Relation
thetaJoin (Relation) Relation
semiThetaJoin | (Relation, Expression) Relation
attributes (Relation) Set

addAttribute (Relation, Attribute, Object) | Relation
removeAttribute | (Relation, Attribute) Relation

not allow operations on mismatched frames (or, if possible, will automatically put
two coordinate representation into the same frame via appropriate change of frame
calculations).

3.3.8 Relation

A Relation is a set of tuples, all having the same domain (schema). A tuple is a
mapping from an index set into values. The index set is a set of attribute objects,
not simply a set of consecutive numbers starting at zero or one. Table 3-7 gives the
additional method signatures for a Relation.

3.3.9 Function

A Function is a relation in which the values of the dom attribute set uniquely
determine values of the range attribute set. Every point in a dom set maps to a
point in the ran set . Further, every point in the ran set corresponds to one or more
points in the dom set. dom and ran belong to (possibly larger sets) domain and range.
Table 3-8 gives the additional method signatures for a Function

3.3.10 Tuple

A Tuple is a function with a domain that is a set of attributes.




Table 3-8: Additional Function Method Signatures

Name | Input Types | Output Types ]
domain ) Set
range ) Set
dom ) Set
ran ) Set
isPartial ) Boolean
isOneToOne ) Boolean
isOnto ) Boolean
isInvertible ) Boolean
evaluate Object) Object
evaluate <T>, <T>,..) Object
atPut Object, Object) Boolean
compose Function) Function
composeClass Function) Function
composeCompatible | (Function) Function
invert ) Relation
restrict Set) Function
overridingUnion Function) Function
curry Function) Function
dispatch Function, Function, ...) | Function
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3.3.11 RealFunction

A RealFunction is a function with range a subset of the real numbers. It maps all
unary and binary numerical operators (e.g., log and x) onto the binary RealFunction
operators.

3.3.12 Array

An Arrayis a function with dom a subset of [i : j] x [k : {] for integers 1, j, k, [.

3.3.13 Image

A Image is an array with extra properties related to its collection or creation.

3.3.14 DiHypergraph

[ Name | Input Types | Output Types |
isPolytree () Boolean
isTree O Boolean
nodes () Set
arcs 0 Set
parentNodes | (Object) Set
parentNodes | (Hyperarc) | Set
childrenNodes | (Object) Set
childrenNodes | (Hyperarc) | Set
parentArcs (Object) Set
parentArcs (Hyperarc) | Set
childrenArcs | (Object) Set
childrenArcs | (Hyperarc) | Set
asRelation () Relation

3.3.15 BayesNet

| Name | Input Types | Output Types |

prior (Object) BayesArc
bel (BayesArc) | BayesArc

asBayesArc | () BayesArc
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3.3.16 Hyperarc

| Name [ Input Types | Output Typeﬂ

parentNodes | () Set

childrenNodes | () Set

asFunction 0 Function

3.3.17 BayesArc
[ Name | Input Types | Output Types |

multiply (BayesArc) BayesArc
instantiate (Tuple) BayesArc
instantiate (Tuple) BayesArc
condition (Set) BayesArc
divide (BayesArc) BayesArc
marginal (Set) BayesArc
multAndMarginal | (BayesArc, Set) | BayesArc

3.3.18 Attribute

Attributes are elements of tuple domains. They are objects in many presentations
of relation databases. They are random variables in condition probability densities
and Bayesian networks. Attributes can have associated domain constraints, refer to
measurable quantities, have units, and have physical interpretations (like row of a
display screen). A

3.3.19 Unit

Subspaces, frames and bases can be specialized to allow individual elements to
be measurable with respect to certain known units. Distinguished (const and often
static) instances of the Unit class include: meter, kilogram, second, coulomb, radian,
degree (absolute), and monomial combinations (e.g., inch, m?, and w/sr-Hz).

3.3.20 Dimension

Each Unit instance is associated with a type of measurement quantity (or dimen-
sion). Instances of the Dimension class include: length, mass, time, charge, plane-
angle, and temperature (with many dozen more).




Section 4

User Interface

4.1 Introduction

A major objective of the Image Understanding Environment User Interface (IUEUI)
is to give users flexible, simple, and powerful tools for exploring data, algorithms, and
systems. Another fundamental objective is to create an interface which will be sup-
ported by ongoing and future developments in the software world at large. To achieve
this, we want to capture the critical functionality of our domain in a small number of
objects which are built on top of existing interface packages and interface construc-
tion toolkits. Efficiency and long term extensibility will increase by implementing
features on the correct level. The same objects which will be used to implement the
user interface can be specialized for users of different skill levels and objectives. This
is all critical for the long term use of our environment because we can depend on dra-
matic changes in interface devices, voice input, video publishing, network interfaces,
hypermedia databases, tools for cooperative work and communication. These are all
things we want the environment to take advantage of as they are developed.

The Interface of the IUE is described in terms of three levels (Figure 4-1). The
Graphics Level is the underlying “machine independent” package for basic display
and graphic operations and telling the screen what to do. Examples would be X and
Postscript. Machine independence is somewhat relative, so for now, this level can
include other packages as long as they support similar functionality. The Interface
Kit Level consists of existing packages for the creation and rapid prototyping of
user interfaces and related tools on top of graphics level software. Examples are such
things as Interviews, TAE, NeXTSTEP. This also must include use of tools found in
the selected software development environment such as editors and debuggers. The
Image Understanding Environment User Interface (IUEUI) Level consists of
the objects in the user interface. This includes such things as object displays, plotting
displays, several types of browsers, and structures for describing the interface context.
The IUEUI consists of a small set of objects which can be freely combined for very
powerful results. The specifications of these objects is relatively independent of the
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other two levels although it will be required to show in the programmers manual how
the functionality of the IUEUI objects are realized at the other two levels.

4.1.1 Paradigms

Some of the different interface paradigms we have discussed are:

o Subject/View
e Data/Flow

¢ Display methods as integral parts of objects

These are not disjoint in our design and each reflects critical capabilities for the
IUEUL An object-oriented methodology is essential for the interface because we don’t
Wwant users to have to use literally thousands of different functions depending on the
type of object they are trying to display, browse, or inspect. This is often a problem
with C-based environments because users need to specify the type of value and the
type of object. At the same time, we need to provide explicit, powerful tools so users
can control all aspects of data visualization at anytime. We often want to display
the same object in several different ways (displaying the gradient as a vector field,
or mapping the different components of the gradient onto different color bands). It
is not sufficient to let the user simply tell an object to display itself and then let the
object “decide”. It is essential that users be able to view objects in a completely
controlled manner and that there are intelligent defaults reflecting common usage for
less experienced users. Dataflow capabilities are necessary to allow a user to create
a complex process by interactively specifying the combination of other processes and
to monitor their execution. '

4.2 Required Functionality

This section describes the necessary functionality for the user interface based upon
the union of attributes found in several different existing IUEs and, in some cases,
their deficiencies.

* Object Display Control We want the user to have complete control of how
spatial objects (images, surfaces, features, networks, pyramids, etc.) are viewed
with maximal flexibility and ease of specification. The mapping between a
spatial object and a display window needs to be explicitly represented by a
Display Mapping Object that can be manipulated, set, and saved. There are
two basic aspects of this. One concerns how positions on the object get mapped
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onto positions in a display windows. For this, users want to control such things
as zooming, panning, perspective, warping, and other geometric operations. For
now we refer to this as the Position Mapping. The other aspect concerns how
values of an object get mapped onto display window values such as intensity
and color (sometimes text, icons, and graphics). For now we refer to this as the
Value Mapping.

The distinction between the position and the value of a spatial object can be
complicated and a user needs to be able access any attribute of an object and to
display it as he wishes. For example, a discrete curve can be viewed as a mapping
from integer indices onto 2D positions with respect to an image coordinate
system. When I overlay the curve on top of an image, | am mapping these
2D positions along the curve onto window positions using the same position
mapping that was used for the display of the image. I also would like to control
the color/intensity of the display at these points based upon registered values
associated with the curve (such as curvature). For example, a user might want to
display an intensity image in 8-bits of green intensity and then overlay extracted
curves on top of this with the display of curvature values along the curve mapped
onto 8-bits of red intensity. And to say this as least as directly as the previous
sentence.

Virtual Objects When display transformations are applied to an object, it
should not involve creating a new object: only the display in a window is
generated. An example is manipulating the underlying color look up table to
perform a thresholding operation. In this case, there is no thresholded image
object produced, only that which is displayed in a window. This goes by many
names in different systems such as Pixel Mapping Functions, Dynamic Color,
Generalized Color Look-Up Tables. It includes operations such as thresholding,
histogram equalization, fitting to a linear display range, overlays, and others.
The display buffer is a short term memory for a view of a displayed object: we
should perhaps provide routines to use this directly. Some work on the Lisp
Machines would implement image processing operations by bit-blitting.

Commands and Intelligent Defaults to Deal with 8-bit, 24-bit, 32-bit
displays: The interface should be able to deal with different types of display
devices, taking into account how deep the display buffer is.

Display Overlays: It is important to be able to display extracted features and
values overlaid on top of images (and other objects), as in displaying a vector
field on top of an image, or in displaying extracted edges and junctions. The
overlays can occur with respect to the display window (annotating an image
with text) or with respect to the displayed objects (marking a displayed surface
with features that occur upon it). This is one aspect of the specification of
multi-object displays.
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e Linking Displays and Browsers: Viewing transformations can be concate-
nated through links between displays. The view (the mapping between a spatial
object and a display window) in one window can be concatenated with the view
specification in another. A common example is using one window to zoom onto
the display in another or using one window to display a selected portion of
another. Panning and Zooming are so common they will probably be directly
supported as a default or through a system level menu. It is also useful to have
links between browsers, such that when an object is selected in one browser,
the attributes of the selected object can be viewed in another.

o Interface Context: Information describing the current context of the interface
state is used for intelligent defaulting. This would include things such as the
current window, the current mapping, established links between windows, the
thickness of lines in graphic overlays, the current displayed objects, the layout
of windows and browsers on a screen, and several other things. This would be
an extension to the underlying context provided by the graphics level. These
contexts can be saved and read. Selection of information through browsers also
has a context for intelligent defaulting. This includes such things as the most
recently selected object, links between browser windows. This is especially
important when interactive browsing is used for sequences of queries over a
database

o Interactive Command Language: All display actions involving objects can
be specified through an interactive command language. This should have intel-
ligent defaults and abbreviations (such as displaying to the current window if
none is specified). These commands should also be usable in code for creating
scripts and general display routines. It is not necessary that all interactions take
place through this command language (Some will be invoked by menus and spe-
cial keys and refer to the current display context). The Interactive Command
Language is especially important because it provides a functional specification
of the entire interface.

e Process Monitoring: Monitoring the execution of a task; visualizing pro-
cessing at the current locus of processing. This should be performed using the
general browser class over a task database.

¢ Animation Tools/Operations: dumping window or screen output to video
tape; cycling through a sequence of displays or displays written out to file;
cycling through a sequence of displays; use of double buffering in the display

buffer.

¢ HardCopy Tools/Operations: dumping window or screen output to paper,
slides, overhead transparencies. [Note: should we make PostScript compatibil-
ity a requirement?]




34

¢ Interactive Command Buffer: The user can type-in display commands in
an interactive buffer; he can cycle through commands, he can perform window-
based editing operations on commands in the command buffer and then specify
their re-execution. A good model is the ease of use with the Lisp Listener. We
need the same functionality for interface and object interaction operations even
in a C-based environment.

o Synergy of Interface and Development Environment: When moving
from the debugger and editors for code development to the display and browsing
operations of the interface, it should not feel like starting up completely different
processes.

e Object Interaction Displays are also used for interacting with spatial objects
in order to access values in them, move them around, and apply operations to
them. In interactive processing, when the user clicks on the display window,
the position in the window and the current object and the current object value
are saved. The current object can be explicitly specified or taken from context.
Disambiguation may be required if there are multiple overlapping objects. The
user may be required to use a label plane (an image of pointers to objects
which occupy a given position) or use geometrical data base operations in the
IUE. Both are potentially expensive and don’t reflect operations specific to the
IUEUI but are general IUE spatial data base operations that can be accesses
through the IUEUTL. It is sufficient that the interface is able to return the selected
object(s) and object position from the object display mapping.

e Graphics and Text Overlays: This involves writing and graphic drawing
(both 2D and 3D) with respect to a display. This is especially useful for slide
creation, documentation, and data generation. It has several modes that need
to be distinguished. Sometimes we want to do this with respect to the window
in which a spatial object is displayed; sometimes with respect to the displayed
spatial object or object coordinate system (perspective view of an object model);
sometimes we want the generated graphic display to generate and instantiate
corresponding IUE objects; and sometimes we want to refer to the entire screen
on which several display may be present, as in connecting features in different
windows and browsers by arrows or annotations.

o Default layouts for windows and browsers: The desired layout of windows
and browsers can be saved and be available to a user when he starts using the
IUE. Several different such arrangement can be stored and brought back for
different situations under user control.

e Simplified Access to Interface Objects: The IUE should provide simpli-
fied, interactive access to the interface objects found in GUI Kits. Such things




35

as sliders, knobs, buttons, text input/output fields, menu creation and person-
alization, and icons.

Display History: The sequence of display or browsing actions for a particu-
lar window or browser are saved and can be reaccessed and used for creating
animations.

Types of Displays to be supported: Image, Edge/Contour, Vector, 1D
Plot, 2D Plots, ND Plots, Features, Surface (grid and rendered), Volumes,
Color Images, Sets/Databases of feature objects [be able to refer to selected
attributes], Image Sequences, Animations of Image Sets, Gray scale Images,
Metrically embedded graphs (graphs showing relations between extracted image
features).

Interactive Object Creation (Draw Objects): It should be possible to
create object interactively. This is useful for creating sample idealized data for
testing and development. Interactive Object Editing and Creation should also
be supported.

Updating Displayed Objects: In some cases we want a display or a browser
to be updated when an object changes (such as a browser for a database of
executing tasks).

In-code Functions for prompting user for unspecified information and
other interface actions: enable user code to refer to interface actions. Fx-
amples: A routine can specify that a particular value is to be queried from a
user interactively or set from some gizmo/widget. Or that a particular browser
field is to be updated when some state occurs or a process completes execution.

Multiple Object Displays: A spatial object is viewed through a display
window by a mapping from the spatial object onto the display window. It is
important to be able to map several spatial objects onto the same window at
the same time or through the incremental creation of a display. Examples are
for such things as mapping different images in a stereo pair onto different color
planes; overlaying extracted features onto an image (or arbitrary surface). For
operations such as overlays, transparency, Color, Cycle, flashing, display buffer
animation.

Mensuration tools: rulers, grid overlays, flashing them; orientations of rulers
under zoom-links between windows; and cursor type and the use of multiple
cursors. Whether the measurements are being made only relative to the 2D
display window or with respect to the spatial object. These can be built on top
of the basic interface capabilities and the display of IUE objects (in particular,
the interactively functionality of the display object and IUE objects such as
bit-mapped regions, line-objects).
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o Incorporating Hardware Accelerators: The interface (and the IUE in gen-
eral) should be able to deal with different hardware accelerators and a dis-
tributed computing network.

¢ Interactive programming tools: Several questions remain to be answered:
Can these be as in Khoros (an image processing system with data flow pro-
gramming environment freely distributed by University of New Mexico)? Can
these be developed from the graph browser and icons? How are DataFlow
transformations handled?

e Device Menu Shortcuts (Bucky Windows): Many menu operations should
be mapped to combinations of key and mouse button processes. The user should
be able to modify and extend the default mapping.

e Access to and Integrated use of Established Visualization Packages:
There now exist several data visualization products, (Plotting package in Math-
ematica, packages from Precision Visuals). We should select those which are
relevant and supply interfaces to them. In fact, we will find ourselves recreating
this functionality (especially for plotting). There are, however, problems with
data type compatibility, speed, selection tools to get exactly what we want dis-
played from these packages in the IUE. Much of the interactivity may not be
obtainable and the feel may be considerably different than the IUEUL

4.3 IUE Interface Objects

We break the IUE interface objects into three basic classes (See Figure 4-2). The
first class consists of displays and browsers. These are the basic tools for viewing
an object and inspecting its symbolic attributes and relations (There are many com-
monalities between these objects that suggest a meaningful and general IUE interface
object). The major portion of what a user does with the interface will be based upon
these objects. The second class are the objects commonly used in the supporting
user interface mechanisms provided by the graphics and toolkit level (menus, wid-
gets, icons, etc.) but with simplified commands so they can be manipulated directly
by IUE users. The third class are support objects for such things as describing the
current interface context, the mappings from an spatial object onto a display window,
links between IUE interface objects, animation files, and several other things. Many
of these are not necessarily objects, but common data structures.

4.3.1 Object Display and Browsers

o Object Displays: (See Figure 4-3) This is for viewing objects which have
coordinate systems associated with them and mapping them onto a 2D display.
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Figure 4-2: IUEUI Object Hierarchy.

It includes such things as images, curves, regions, object models, surfaces, vector
fields, etc. They support several types of operations for controlling the mapping
of an object to be viewed in a window and for interacting with a displayed object.-
There are several subclasses of displays that will appear to the user to occur
in the same type of window. They are primarily distinguished by the types of
methods they understand and all inherit a large number of similar methods from
the general display class. For example, the overlay method means something
different in the context of a surface display than in the context of an image
display. The pixel display class is for viewing images and image registered
features. The local graphics display class displays objects by mapping their
values onto graphic objects such as lines and cubes. Examples are displaying
vector fields and edges. The surface display class is for displaying objects that
get mapped onto mesh or rendered surfaces. There are several different types
of plot display: 1D, 2D, 3D graphs, histograms, scatter grams, perspective
views of functions and tables. Note: We may implement plotting windows
from existing packages (e.g., Mathematica). It will be complicated to extend or
integrate such plotting/visualization packages with the other capabilities which
will definitely be associated with display-windows (such as object interactivity
and selection, function application, window-linking). We may find that we
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can live with this or we will need to implement some subset of these plotting
packages directly in our interface.

Browsers: These are used for actions such as queries over set of objects, deter-
mining and inspecting relationships between objects, process monitoring, and
inspecting values in an object. There are 2 different types of browsers: Field-
Browsers and Graph-Browsers.

Field Browsers consist of a regular array of fields. Fields can be filled with
text, icons, colors, colored text, text in particular fonts. Fields can have actions
associated with them when they are selected or a user changes the values in
them. We distinguish between four types of Field browsers which inherit from
the general Field browser class:

o Set/Database Browser: This is presented as an array of fields. Each
row of fields corresponds to selected attributes of a particular object and
each column corresponds to common attributes over the set (or database) of
objects. An example would be browsing the database which describes the
current active object in the IUE to find the most recently created image from
some operations (See Figure 4-6).

o Single Object Browser: Each row corresponds to the value of an attribute
for an object. This is used for inspecting a single object (See Figure 4-7).

o Hierarchical Browser: Useful for text based inspection of graph structures
and trees. When an item is selected, the related items (along some relational
dimension) are displayed in the next column (See Figure 4-8). [Note: A
good example is the directory browser on the NeXT machine].

o Object-Registered Browser: This contains values extracted from a spa-
tial object, such as the intensity values in some square neighborhood of an
image. Depending on the dimensionality of the object (or relationships be-
tween component objects), this can be presented as a 1D array, a 2D Array, or
multiple 2D arrays and describes curves, images, image sequences, pyramids.
There are restrictions on whether it is possible to interactively change values
in the fields of an array browser. It should be possible to apply operations
directly to the values in the array browser to see the effect of an operation
in a restricted neighborhood of an object (See Figure 4-5).

Graph Browsers: These are for the display of graphs and networks, generally
representing an object as a node and links to describe relations to other objects.
Nodes are similar to fields in field browsers and can be filled with text, icons,
colors, colored text, text in particular fonts. Nodes can also have actions asso-
ciated with them when they are selected or a user changes the values in them.
Links can also be colored and selected. A typical use would be for the display
of a constraint network (See Figure 4-9). Note: For complicated relationships
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or large sets of objects, these can become very complicated and we may need a
way (e.g., GRASPER) for segmenting nodes and links into spaces].

An important type of graph and graph browser is a metrically embedded
graph wherein the nodes (and perhaps links) are restricted to occur at posi-
tions with respect to a coordinate system. This type of graph inherits properties
from both the Graph Browser and a general spatial object which can be viewed
in a display window. An example would be an image registered network which
describes potential links between extracted features for displaying grouping op-
erations. An important attribute of metrically embedded graphs is that they
can be viewed as an object display for operations such as zooming and having
access to the underlying context in an image. [Note: We may also want to
distinguish tree graph browsers.]

4.3.2 Simplified access to GUI objects

e Gizmos and Widgets: The IUE should provide simplified, interactive access
to the interface objects found in GUI Kits. Such things as sliders, knobs, but-
tons, text input/output fields, menu creation and personalization. This will
involve commands for creating gizmos and widgets, for positioning and scaling
them, for attaching them to parameters, for reading and writing to them. An
example would be creating a slider and then getting values for an interactive
thresholding operations from it.

¢ Menus The IUE should provide simplified interactive access to menus in the
GUI kits. This involves being able to extend menus, create pop-up menus,
associate actions with menu items. A critical design task is deciding what goes
into system level menus and how they are organized

¢ Icons The IUE should provide simplified interactive access to icons in the GUI
kits. These may not be flexible enough for our needs [Note: Icons in Khoros
representing processes can be connected together to form a graph for algorithm
creation and process monitoring. We may be able to obtain the same function-
ality by using a graph browser with icons at nodes].

4.3.3 Support Objects

There are also several objects that are used and manipulated as part of the interface
that we will refer to:

¢ Display-Look-Up-Table: A generalization of a color look up table that de-
scribes how to map object values onto screen values. It can also include func-
tions.
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o Object-Display-Mapping: A structure which describes the mapping from an
object onto a display. This includes both the position and values of how the
object is displayed and a reference to a particular Display Look Up Table.

e Object-Browsing-Mapping: A structure which describes the mapping from
an object or database onto a browser.

o Object Display Links: A structure which describes the concatenation of
a display or browsing operation between IUE interface objects. Thus a link
between display windows wl and w2 with an associated zoom and pan would
display an object in wl with wl’s object display mapping and then display the
same object in w2 by concatenating onto the object display mapping for wl,
the specified zoom and pan operation.

o Interface layout: A structure which describes the object instances in a par-
ticular instantiation of the interface. Users may prefer different interfaces (ar-
rangement and instantiation of the basic IUEUI objects) depending on the task
or level of sophistication.

e Display Context: A structure which describes current context for a display.
Such things as the current window, the current object, the current object dis-
play mapping, the current display command, the current mouse-selected object
position and value, and others. Display operations can use defaults based upon
these.

e Browse Context: A similar structure for browsing operations. Such things as
the current browser, the current data base, the query history, and others.

e Display Snapshot: What is produced when the current display is written to
a file. It is just what appears on the screen and not the actual objects.

e Animation File: A sequence of display snapshots.

4.3.4 Interface to Arbitrary Interface Devices

In the development here, we are assuming a very limited set of interface object: a
mouse and a keyboard. By the time the environment is commonly adopted, there
will be a much wider array of objects such as: voice input, gestural recognition (data
gloves), and perhaps virtual reality displays. What tools will we provide to interface
such devices with the IUE? At this point, we are raising this as an important design
issue. A rough cut was made at this earlier by suggesting objects

o Keyboard object

e Pointer object
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e Mouse object

e Trackball object

with methods such as Open-Device, Get-History, Close-Device, Attach, Get-Status,
Handle-Event. More extensive work will be needed in this area, perhaps requiring
special IUE interface buffers and IUE access to Graphics Level event handling rou-
tines.

4.3.5 Total Synergy between IUE object methods and the IUE Interface
Operations

Any of the operations that can be applied to objects as part of the IUE should
also be applicable to object prior to displaying or browsing them. In the examples
below, because the syntax for this is not specified, there will be some confusion. For
example, how do I refer to the registered curvature values associated with a curve
object if [ want to display them? What is the query I use to find all curves greater
than some length prior to displaying them? Using the interface requires use of objects
and operations in the IUE, notably database operations and queries; referring to a
particular set of attributes of an object; selecting a portion of an object; applying a
transformation to object values; and operations for combining objects. Much of this
comes for free in LISP. It may require building a special parser for non-interactive
programming environments with an extensive library of functions. (Note: All IUE
objects will also require browse and display methods) .

4.4 Object Display

The object display is for mapping an IUE object onto a 2 dimensional view with
methods for controlling how this is done. It is a major object and is specialized
into some different types of displays which have different inherited methods from the
general display object. A display is also recursive in that it can consist of several
displays. Performing and interacting with an object display takes place in an object
display window. From the user point of view, an object display can be thought of as
a window with different component displays in it.

4.4.1 Appearance

The layout for the object display window is shown in (Figure 4-3). It is a rectangular
window with

e a title bar (which can be colored or patterned)
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a close box for closing the window

e an iconization-box for turning the window into an icon and saving it’s state

horizontal and vertical scroll bars for panning
e a resize box for changing the size of the window

e a status bar containing information about the current display object(s) and the
last selected object location and value

e a button bar for actions such as display of the current browse selected object.

A window can be selected by clicking anywhere on it with a mouse. It then becomes
bound to the variable named *current-window™* for future displays and interactions.
Thereafter, when the user clicks in the display portion of the window, he executes
the interactive methods which defaults to displaying the current object location and
value (the user can associate arbitrary interactive methods with mouse actions). The
current window has a distinctive highlighting of the title bar as do any window to
which is is linked. As an option, the user can hide other windows except for the
current window and windows to which it is linked. The window can be repositioned
by clicking and dragging on the title bar.

There are two other associated windows for interacting with the display in the
current window:

¢ Interactive Command Buffer. This appears like a WYSIWYG text editor.
Textual outputs can also be written to the Interactive Command Buffer. It
has a vertical scroll bar for accessing previously written commands and allows
operations like cutting, pasting, etc. It is something like a limited Lisp Lis-
tener for interacting with objects and displaying them. A nice feature it should
incorporate is the use of shift-return in Mathematica: a command is only exe-
cuted when the user hits shift-return. This makes it possible to create complex
multi-line operations and also breaks the display command history into chunks
of related actions that a user may want to access for later editing. (Note: It
may be a Lisp Listener or something very similar if the development takes place
in an interactive programming environment.)

o Display Tool Box. There are many familiar interactive controls for displays
and visualization, such as interactively manipulating the object-value to screen-
intensity function by interactively shaping the function; selecting color look-up
tables; modifying color look-up tables; interactively building display commands
using templates or command browsers; floating tool palette of interactive draw-
ing tools; etc. The Display Tool Box is a menu of such tools, organized into
functional groupings of interactive tools for manipulating the current display.
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From a functional point of view, it allows potentially redundant access to the
display methods without using the interactive command buffer. It is somewhat
like the system control menu on the Macintosh and the system preference menu
on the NeXT machine. In the Figure 4-4, the large buttons on the right are
some of the different modes of interaction. The interaction field on the left has
the corresponding interaction tools for a selected mode. The ones shown here
are existing ones on the NeXT for manipulating the color look-up table. The
order of the buttons in the tool box should be settable by the user. Users can
also select particular interaction tools and have them occur as floating palette
(in cases where the user want to interact with multiple tools from different sets
of tools at the same time).

(Note: We probably need a similar menu for setting up system defaults and
initializing characteristics of the IUE: initial layout, font selected, level of ex-
pertise, etc.)

Some of the tools sets that should be included in the tool box are:

Interactive Selection and Modification of the the current color lookup table and
display mapping function; cycling through different color look up tables

Interactive Selection and modification of a display’s attributes using browsers
for the display window’s attributes that can be used for changing attributes of
the window and display; Browsers over the windows that the window has links
with

Interactive Display Command Creation such as Browsers for selecting existing
position and value functions to be placed into commands; available options for
the different display commands and their current defaults presented in template
form

User-created gizmos/widgets: sliders, buttons, knobs that the user has created
gizmo/widget arrangements of which a user is particularly fond

Interactive gizmo/widget creation using gizmo selection-wells

sending displays to a printer

animation creation and playback

Note: We can either associate the command buffer and tool box with each display
window or else have them automatically linked to the current window. The second
alternative is simpler, though it may have some context problems since displays will
always default to the current window. It may be best to default to one command
buffer and one tool box, but to have their context shifted in terms of setting to
different selected tools when different windows are selected.
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Figure 4-4: Display Tool Box
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4.4.2 Attributes and Methods

Class-Name Object Display
Description An Object Display
Sources/existing implementations
Superior(s) IUE Interface Object
Component Class(s)
Associated Class(s)
Slots
Screen-Size: Size of window in screen coordinates. Returns a 2D integer

vector (maybe a specialized struct)

Screen-Position: Position of upper, left hand position of a display window
in screen coordinates. A 2D integer vector (maybe a specialized struct)

Internal identifier: unique number associated with each display window
Name: Name of window: a string

Title-Bar-Color: Color of the title bar

Title-Bar-Font: Font Object

Cursor: Any of the set [cross-bar, cross-hairs, arrow, user-defined (Note:
These should be definable as IUE Objects: lines with constraints between
them mapped onto the overlay planes or bit-mask regions).
Children-Windows: A list of display-link objects describing displays which
are linked to this display

Parent-Window: The display to which the display is linked

Current Object Display Mapping: An object view mapping object de-
scribing the current mapping of an object onto the display. This includes
pixel scaling factors

Current Display Command: A set of strings for the current display com-
mand

Object-location-list: A list of locations selected by clicking the mouse on
the display: it inverts the specified object view mapping (the default is the
current one) to determine the location in the specified objects
Object-value-list: A list of values selected from an object using the object-
location-list
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Window-location-list: A list of locations selected by clicking the mouse on
the display. The locations are in screen coordinates

Display History: A Database
Current Display Mapping Table: A display Mapping Table structure

Methods There are several methods for displays and they are organized into
different groups (A good way to see the effects of these methods is to look at
examples from the section on the command language):

Methods for Manipulating the Current Object display position
mapping: This includes operations such as panning, zooming, perspective
views, and warping. These are methods that control how positions in the
specified object(s) get mapped onto a display window.

Methods for Manipulating the Current Object value mapping: These
include operations such as overlays, mapping onto different color bands, trans-
parency, and others. These are methods that control how values in the spec-
ified object(s) get mapped onto screen attributes such as color and intensity.

Methods for setting the current display mapping table: These include
how to configure planes in the screen buffer for the display of color images;
how many panes to use for overlays; particular functions and conditions to
apply to object values prior to display.

Methods for Screen Attributes: These involve controlling attributes of
the window the display is mapped onto and includes such things as position,
size, attributes of the title bar, event handling for the mouse.

Methods for Links: Linking display transformations in different windows.
Operations include creating links and associating position and value map-
pings with the links.

Methods for Interaction: These involve interaction and manipulation of
displayed object(s) in the display. Operations include recovering object po-
sition and value from a mouse click, applying functions to selected objects,
applying functions using selected information.

Methods for History: Methods to coordinate displays overtime, such as
cycling through an image sequence, playing an animation of displays.

Methods for Graphics: These involve accessing display registered graphics
packages for drawing lines, text, and other things. These occurs in four
different modes: 1) relative to the window of the display; 2) Relative to
the entire screen; 3) the specified object or coordinate system; or 4) for
instantiating IUE objects corresponding to the graphic displays.

Methods for printing and writing to file, animation: It should be
possible to send the view of any object to a hardcopy print device or to files
for later redisplay or printing.
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Manipulating the Current Object Display Position Mapping
zoom (window-zoom)

Arglist x-zoom-factor y-zoom-factor
Return Type None
Description Specifies the scale of mapping from an object onto a window
Exceptions
pan (window-pan)
Arglist x-translation-factor y-translation-factor

Return Type None

Description Specifies the moving the position of a displayed object in a
window

Exceptions
Matrix

Arglist Homogeneous Viewing Matrix
Return Type
Description

Exceptions
Position-function

Arglist Code Chunk
Return Type None

Description A chunk of code which computes a position from positions
or values taken from the specified display objects. These are referred to
as dummy variable by placing “.value” or “.position” after the object name
(Note: what should be done if the values and positions are not just scalars?).
As the display processing iterates over the specified object, the code chunk is
applied to the specified values and positions prior to the display to generate
a new position. In Lisp, these can be expressed as functional closures and are
pretty easy to manipulate. In C, we may have to provide a compiled library
of code chunks that can be used in this way or with a parser.

Exceptions
Warp
Arglist
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Return Type
Description

Exceptions
Manipulating the Current Object Display Value Mapping
linear-mapping (linear-map)
Arglist object-value-min object-value-max screen-value-min screen-value-
max

Return Type none

Description Will map the specified range of object values linearly onto
screen intensity values

Exceptions screen-value-min and screen-value-max will have default values
values

Arglist a method for extracting values from a spatial object
Return Type none
Description

Exceptions
value-function

Arglist A chunk of code which computes a value from values taken from the
specified display objects. These are referred to as dummy variable by placing
“.value” after the object name. Essentially, as the display processing iterates
over the specified object, the code chunk is applied to the specified values
prior to the display. In Lisp, these can be expressed as functional closures
and are pretty easy to manipulate. In C, we may have to provide a compiled
library of code chunks that can be used in this way or with a parser.

Return Type none
Description see examples throughout this document

Exceptions
overlay-object

Arglist an object (this could be a virtual object)
Return Type
Description

Exceptions
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Methods to set the Display Mapping Table
rgb-24, rgb-16, rgb-8

Arglist none
Return Type none

Description Specifies that the display of colors is mapped onto red green
blue values on the display

Exceptions There are going to be several variants of this depending on
how we want to specify allowable overlays values, deal with transparency.
We should copy something simple from graphics. The different components
can then be referred to as :red, :green, :blue.

overlay-color

Arglist Any from the enumerated set (red,green,blue,clear,....)
Return Type none

Description will perform the specified display in the overlay plane as a
solid color.

Exceptions Assumes the display value is binary; if not, 0 gets mapped onto
no display and other values get mapped onto display in the overlay color. The
different overlay colors can be referred to by name or an associated number.

yiq
Arglist
Return Type

Description

Exceptions
hsu

Arglist
Return Type
Description

Exceptions
CLUT

Arglist
Return Type




Description

Exceptions
Transparency

Arglist
Return Type
Description

Exceptions

Flash

Arglist
Return Type
Description

Exceptions
Methods for Links between displays
create-link (link)

Arglist Interface-objectl Interface-object2 display-mapping-object
Return Type
Description

Exceptions
set-link

Arglist Interface-objectl Interface-object2 display-mapping-object
Return Type

Description Sets (changes) the display-mapping-object associated with the
link between interface-objects

Exceptions
un-link

Arglist
Return Type

Description

Exceptions
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Methods for Interaction
initial , always, continuous

Arglist Interface Command
Return Type
Description

Exceptions
interactive-function-selection

Arglist a set of Interface commands indexed by a number
Return Type

Description For an interactive function, programs are associated with dif-
ferent numbers. When a key is selected, the corresponding function is applied
to values in the different lists of values obtained by mouse clicking.

Exceptions
clear

Arglist none
Return Type

Description Clears the position and value lists (probably need other for
removing some number of items

Exceptions

4.4.3 Local Graphic Displays (vector, edges)

Local Graphic Displays are a subclass of object display, but instead of mapping
an object attribute onto a screen intensity or color, it will display a parameterized
graphic, such as a line, a square, a perspective view of a cube, or something from
a library of such displays or a user specified one. A common example is a vector
display which will map each component from a pair of images onto the x and y
components of a vector, usually displayed as an overlay on top of an image. Other
types of visualizations are possible. For visualizing three dimensional attributes in
register across an image, the user can display little unit cubes with their orientation
computed from the specified components of display. The graphic display can be a
piece of graphics code which will be positioned to the projected location of the pixel.
For example:
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(1g x-component y-component :graphic-type xy-vector :overcolor-plane red]
or the command language could include equivalent expressions such as
[v x-component y-component :overcolor-plane red]

will take two images and use them to specify the respective (x,y) components of
vectors displayed in the red overlay plane at each point.

[1g x-component y-component
:graphic-type xy-vector
:x-increment 10
:y-increment 10
:value-function [+ x-component.value y-component.value]
:linear-mapping 0 20 *min* *max*]

This displays a vector at every 10th pixel with the intensity of the displayed vector
determined by summing the x and y components and then linearly mapping these
between 0 and 20. Note the use of methods from the general display class.

[1g x-component y-component gradient-magnitude
:graphic-type xy-vector
:Xx-increment 10
:y-increment 10
:scale .5
:value-function gradient-magnitude.value]

This displays the same vector field, but uses the third component to determine the
intensity of the displayed vector. The scale method is expressed in object coordinates
(accounting for the size of an object pixel relative to a screen pixel). There would
also be methods for displaying vectors specified in (r,theta). (Note: we could have a
method xy-vector-normalized).

Edges are similar to vectors in drawing lines corresponding to the edges. Different
types of edge displays should be distinguished:
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¢ Mapping onto horizontal and vertical edges in the cracks between pixels

e Placing a single edge at the center of a pixel with it’s orientation determined
by the specified components objects

One way for displaying 3 dimensional surface orientation from images which contain
the orientation angles:

[p image]

[1g anglel-component angle2-component
‘graphic-type unit-cube-perspective
toverlay-color red
:x-increment 10
:y-increment 10]

4.4.4 Surfaces

SRI for terrain views of surfaces

Modification of existing package

4.4.5 Coordinate Transform Network of Images

There are several objects and displays which involve sets of related images, such as
stereo pairs, motion sequences, pyramids, and mosaics. In some cases the relationship
between the images is expressed by an explicit coordinate transform between the
components of the object.

These displays can be handled in several ways:

e display each image in a different window and have them associated by links

o display each image in the same window but scale it to be appropriately registered
with a selected scale and cycle through the display history

o display each image in the same window but choose a single scale for all of them
and use general display mechanisms for indexing through all the displays.
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4.5 Plotting Displays

Much of the functionality for plotting displays is defined in existing packages such as
Mathematica. Mathematica has different types of plotting displays with “methods”
corresponding to keyword based argument passing. It would be nice to be able to use
something like this.

There are some particular things that need to be addressed in using such a package
that may require recoding into our environment:

o It should be compatible with the general display methods for such things as
interacting with the plot display using a mouse; for the use of different colors;
for being able to display.

o It should be fast and not require time consuming conversion between the data
formats of the plotting package and IUE objects.

Different types of displays include 1 dimensional plots, 2 dimensional plots, 3 dimen-
sional renderings, scatter grams, density plots, parametric plots and contour plots.

4.6 Field Browsers

Browsers are generally used for interacting with the textual, symbolic and relational
aspects of objects. Different browsers are used for different types of objects. There
is one type for browsing a set or database of objects (set/database browser). There
is another for inspecting attributes of a single object. There are two different types
for viewing networks and graphs (graph browser and hierarchical browser). There is
another type for inspecting spatial object which have coordinate systems or relations
between coordinate systems (Object registered browser).

(Note: Should browse methods be specialized based upon the type of object be-
ing browsed? Or how objects get mapped onto a particular browser? One type of
interaction for dealing with lists, a structure, etc. How do we conform to the object
inspectors in the development environment?)

Browsers have many similarities with displays. They can be linked. They have
something like a value-function or display mapping object in that the characteristics
of the browsers field (such as the text size, font, background color, display of an icon)
are determined by the object being browsed. ‘

(Note: How should links between display windows and browsers be handled?.
When a display is updated: the browser can be updated: when the browser is changed
a value in the browser is changed, a display can be updated.)

Browsers are built from several component objects:




o A field appears as a rectangular box which has slots for

o a background color

o a text string

o a text-size, text-font, text-color
o a type of boundary

o a screen-size and screen-position
o an icon

o a field mapping object which describes how to map attributes of an object
to the different of the field. For example, in the object registered browser,
a field could contain a number colored as the intensity of the corresponding
location in an image. Or the background of the field could be colored at this
intensity and the text string shown in another color.

A field also has a field-selection-action that is performed when the field is se-
lected by a mouse-click. An action could be to bring up a browser on the object
in the field that was selected. When a field is selected, what happens is much
like when a mouse clicks a pixel in a display in the interactive mode. The
location and value are stored in a list for later use.

e Fields can be organized into connected horizontal or vertical field groups
where in each field as a unique index in the Field Group. The fields in field
groups will generally have different object mapping functions. An example
comes from the object registered browser in which a given field group can corre-
spond to registered values from different objects. For better visualization, these
could be displayed in different colors, fonts, etc, in addition to their position in
the field group. A field group can also have a distinct boundary.

o Field Groups can be organized into field matrices where in each group as a
unique index set in the field matrix. This is used for mapping objects onto the
matrix. Unless otherwise specified, the component fields of a Field Matrix will
inherit the field attributes of the Field Matrix. There are constraints on the
allowable sizes and positions of component fields.

o Field Matrices can be scrollable as a way to control the mapping of an object
(or object set) onto the Field Matrix.

4.7 Object Registered Browser

The object registered browser is used to inspect the values in a neighborhood of a
spatial object. A common example is inspecting the image values about a selected
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point. It is very much like the display of a spatial object in a display window, but
instead of the values being mapped onto window positions and screen intensities and
colors, things are usually mapped onto field locations and text. It is also possible to
map onto general field values such as colored text, changes in font, colors, and icons.

The layout of an object registered browser as it would appear for an image sequence
is shown in (Figure 4-5). The fields display the specified values in a particular frame
centered on the specified frame number and (x,y) position. In the actual display, the
field which corresponds to the location of the array browser is shaded or highlighted.
Spatial Directions are appropriately registered: up in the image means up in the array
browser. The Object to Field Mapping Object specifies for a particular object what
type of field mapping is used for it’s specified attributes or values. This can be a user
specified function or from a library of existing functions. Users can select the type of
font, text size, color, icons, that they want values in an object mapped onto.

For using the browsing an image and a segmentation:

[browse-object-registered
image label-plane
:field-action [browse *b3* [get-value label-plane
object-location.x
object-location.y]]

This indicates the importance of being able to access the object values and locations
from the selected browser fields and the use of a object browser mapping object. This
is very much like what occurs with mouse clicking in a display window for a displayed
object: the values go into the object-value-list and the corresponding object locations
into an object-location-list.

(Note: how would we perform array browsing on a pyramid? What is the local
neighborhood? At given point, display the values in the children level. Assume
there is an explicit coordinate transform between the different levels. The dimension
button could then correspond to the things at different levels. What if the relation
is a sequential one over time local neighborhood structure? Objects are related by
some coordinate transform between the levels.)

(Note: how would we use a region to define the shape of the neighborhood? Use
an object to perform a composition operation with another object? Use a curve to
pull values out of an image? Use a containing volume, minimum bounding rectangle,
minimum bounding cube and do regular array browse with respect to that?)
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4.8 Database/Set Browser

An example Database/Set Browser is shown in Figure 4-6. It consists of three
basic parts. A field of button for interactively building queries, selecting objects, and
applying operations. A text input field for typing in pieces of text to be used in
queries. A field matrix in which rows will correspond to an object and columns to
attributes the objects have in common.

" For example, suppose I wanted to find a result that I generated but couldn’t recall.
In general, it would be a good idea to keep a browser over the set of active objects
(let’s call this the environmental Data Base — EDB). I would set this up with the
command:

[create-db-browser EDB :attribute-fields name time-of-creation from-function]

Sometime into my work, I want to find a flow-field that was the result of an amazing-
function. I would type in the text area “amazing-function” Note: for text-matching,
substring matching could be used], click it, click =, click the column attribute field
labeled “from-function”, click UPDATE. Then the browser would list all the objects
which had been created from the function amazing function. To find the most recent, I
would click the attribute-field labeled “time-of-creation” and then click GREATER-
THAN, SORT, UPDATE, and the topmost field would contain the most recently
created object from this routine. This is also bound to the variable *current-object*
and would be displayed as a default.

(Note: Perhaps, as a query is being created interactively, it should be displayed in
an interactive command buffer. If so, how should this related to the text input field
in the browser?)

For each query, a set of selected objects is found. This set can be used for further
queries. Sometime people make mistakes or want to return to a previously determined
set. The LAST button is for this. We could save the current sequence of sets and
continually back up through them by repeatedly clicking the LAST button (Note:
This may be too costly).

It is also possible to associate with the text field selection action, the operation to
browse the selected object in a separate object browser.

[browse EDB :selection-action [browse *bl* *selected-item*]]
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Figure 4-6: Set/Database Browser.
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4.9 Object Browser

The object browser is a simplified version of the Database/Set Browser with out
mechanisms for interactive queries. It is used for inspecting the attributes of a single
object. One column is used for the names of attributes and the other column is used
for their values.

4.10 Hierarchical Browser

The hierarchical browser is used for the inspection of graphical and network objects.
Each column corresponds to a set of objects. When an object is selected, the types of
relations (arcs) associated with the object are displayed in the Current Arc Browser.
For a selected type of relation (arc), the related objects are then displayed in the next
right column. This can then be repeated any number of times. It may be useful to
have a field selection method to browse the currently selected object.

4.11 Graph Browsers

We need to define how to display IUE constraint networks. This includes: being
able to zoom these in something like a display window, coloring the nodes based upon
their attributes, and mapping them through a pixel mapping function.

Graph browsing a relational object or a graph will be set up using operations such
as, add-node, link-nodes, remove-nodes, add-arc, remove-arc, and interactive creation.

4.12 GUI Object Access

We need a general create-gizmo command.

It would be nice if the SRI model for menu definition for the environment could be
set up in a browser and modified interactively.

4.13 Associated Objects

link-transformation object

parent display

child display

Object

Object-View mapping to be concatenated
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Display Command Buffer Associated with window
Objects displayed in window

Object-View-Mapping
Object

Position Mapping

Value Mapping Table
Value Mapping Procedure

4.14 Interface Context

There are several values which are used to describe the current state of the interface.

e list of windows

o list of browsers

e links between windows and browsers
e current window

e current browser

e current display mapping

e current display mapping table

o the current object resulting from a browse or display action.

4.15 Interface Command Language

Messages can be sent to displays interactively through the command buffer.

All of the functionality of the interface is accessible through an interactive command
language. The interface command language describes the overall functionality of the
interface. All the interactive commands can also be placed in code for developing
reusable scripts. The Command language supports defaults during interaction for
conciseness and brevity.
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4.15.1 Command Syntax

This is an initial stick in the ground. It comes from the display commands used in
KBVision and PowerVision. The general syntax is

Display-action Window-Identifier object-set [keyword-arguments]=*
Snapshot File

Browse-action Browser-Identifier object-set [keyword-arguments]x*

4.15.2 Window Creation

o Screen Size

e Screen Position

There are defaults maintained in global parameters describing the environment that
are used if these are not specified. These can be changed from grabbing a window
and resizing it in a manner consistent with the GUI package that is used.

{cw ! :size 512 512 :position 100 100]

If a display operation is performed with no existing window, one is automatically
created. Otherwise the *Current-Window* is used.

4.15.3 Browser Creation
4.15.4 Animation Commands
4.15.5 Window Linking

Display Windows can be Linked. A link between windows specifies a concatenation
of functions to be applied to the domain and the range of the spatial object for
mapping onto a display window. An example is using the display in one window to
zoom onto a selected area in another window. In this case, the mapping from the
domain of the object onto window 1 is concatenated with the mapping from the object
onto window 2. Whenever a display mapping occurs in a window all of the associated
linked windows are updates. For simplicity, displays are only updated when a display
action is performed, not when changes are made to the spatial object. Cycles in
window links are not allowed and therefore should be discouraged.

1See Section 4.15.9 on page 71 for a list of Interface Command Language Abbreviations
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i The basic commands for links are:
(create-link wi w
{followed by any of the keywords used to specify viewing an object}]
[unlink w1l w2]
[set-link wi w2
{followed by any of the keyword used to specify viewing an object}]
For example,
[create-link wi w2 :zoom 2 2 :pan 100 100]
creates a link between window wl and w2 such that whatever is displayed in wl
will appear in w2, zoomed by a factor 2 and panned by (100,100).
[cw :rgb-24]
> *Wix
[cw :copy-attributes *Wix]
> *W2x*
[cw :copy-attributes *Wix]
> *W3x
[cw :copy-attributes *W1ix]
> *W4x* ’

[link w1 w2 :value red-component :red-8]
[link w1 w3 :value green-component :green-8]
[link w1 w4 :value blue-component :blue-8]
[p *Wi* color-image]

Will display the different components of a color image in the three different windows.

(Note: Can windows can be linked to themselves (as in zooming into the same
window)?)

Set-link changes the specified transformation between as also does a redisplay in
the in the child window. For example,
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[create-link wi w2 :zoom 1 1]

[create-gizmo :type slider :range -5 5 :name zoom-slider
raction [set-link wil w2 :zoom zoom-slider.value zoom-slider.valuel]

creates a link between two windows and a slider gizmo. When the slider gizmo is
changed, it specifies how much zooming should occur and a redisplay occurs in w2
(the mapping from the spatial object onto wl is not changed).

(Note: in interactive versions for zooming and panning should the selection square
should be an object, like a cursor?)

4.15.6 Object Position Mapping Keywords

e zoom
e pan

¢ affine mapping

e viewing coordinate transforms
e matrix

e position-function

4.15.7 Graphics

Often times the user will want to perform common graphical display for things such
as text, simple two dimensional graphics, more complicated three dimensional graph-
ics. Examples are annotating a display, indicating where some action is occurring (the
position of an epipolar line, translational flow paths, etc.), projecting a wireframe of
a model onto an image.

This functionality can be found in several existing graphics packages and it would
be best if we could just link to such a package. An alternative is to come up with
thousands of commands like

[draw-1line 100 100 200 200 :color blue :thickness 3]
[draw-circle ....]
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for circles, disks, text, and so forth, which will be specific to the IUE. This may
be required if such graphics packages are not accessible in an interactive form for our
interface.

It is important to distinguish three different modes in which graphic displays can
take place:

e they can occur in the coordinate system of the display window. In this case
displays only occur with respect to the window coordinate system.

e they can occur in the coordinate system of the displayed object. In this case I
would be drawing a line with respect to the inverse mapping from window to
object coordinates.

¢ when the display is performed with respect to the coordinate system of an
object, it can actually generate an instance of an IUE object. Thus, in drawing
a line in object coordinates, an instance of an IUE line object would actually
be produced. When the wireframe model is displayed, each line-segment and
junction will be created as an object in the IUE. For composite objects this may
require significant processing. It is straight forward for simple objects such as
polygons, curves, and so forth. This is very useful for producing data for testing
routines. This mode can be coupled with the interactive processing mode to
allow for the interaction creation of data.

these different modes could be specified by a global mode or as keywords in the
commands.

4.15.8 Object Value Mapping Keywords

These are for specifying commonly used transformation from an object value onto
a screen intensity or color:

e overlay-color. Can take values such as red, blue, green, clear (clear the overlay
plane), cycle (cycle through a set of specified overlay colors so that features
displayed at different times get different colors: will select the next available
overlay color),user defined colors. If no value is specified, it means the display
will take place in the overlay plane either using a default or as specified by a
value-function. The overlay plane can be thought of as a glass sheet on which
the user can write annotations and display extracted features and values. For a
displayed image, the overlay will occur in register with the display window. For
a displayed surface or volume, the overlay can occur with respect to the display
window OR with respect to the surface or volume (Note: We need a way of
specifying this).
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o value-function: User can specify an arbitrary function which takes in an object
value and returns a value to be displayed in a display window in terms of
intensity or color. This is a little chunk of code that the display process uses
when it decides how to color a value from the object. For example,

[:overlay-color (red, green, blue, violet)]
[p image :value-function [if (image.value > 10) red blue]]

The first command tells the current display to change the display mapping table
to use the specified overlay colors (in the display toolbox there will certainly be
an interactive color editor for selecting and creating overlay colors). The second
will display red in the overlay plane at a screen pixel corresponding to an image
pixel if the image value is greater than 10, otherwise it will display blue.

[p label-image :value-function [if (label-image.value = NULL)
0
(length label-image.value)]
:linear 0 20 0 *screen-max*]

This function displays a label image (an image where each pixel contains a list
of all the objects which occupy that pixel). The value function determines the
number of objects in this list and the linear function maps this onto available
screen intensities. The object value mappings are applied in the order of the
keywords.

¢ overlay-object the object which will be overlaid. This is generally used when
one object determined where something will be displayed and another deter-
mines what color it should be. For example, suppose I have a binary edge
image that I want to overlay on top of an color image:

[p imagel
[p edge-image :overlay-color red]

this could be specified as:




[p image :overlay-object edge-image :overlay-color red]

A typical use of this is for displaying extracted features with respect to a surface.
Suppose [ have a surface display of the intensity values in an image and I want
to display the locations of an extracted edge-image on top of this:

[s image :overlay-object edge-image :overlay-color red]

CLUT: User specifies a color look up table to map display object values through.
This can be an array of numbers or an array of functions (pointers to functions).

transparency operators: (Note: Consider implementations on NeXT and Sili-
con Graphics)

linear: User specifies a range of values in the object and the range of screen
value that they will be map on to define a linear function.

[p image :linear 0.0 256.0 screen-min screen-max]

would display image in the current window and linearly map object values from
0 to 256 onto the range specified by the system globals screen-min and screen-
max (these would probably be defaults)

[p image :linear 0.0 256.0 CLUT[1] CLUT[2]]

map between values found in the specified color look-up table

4.15.9 Interface Command Language Abbreviations

p for pixel

i for interactive

v for vector

b for browse

cw for create window
cb for create browser

g for graphics

s for surface
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4.15.10 Interface Context and Intelligent Defaulting
4.15.11 Organization of System Menus

4.16 Implementation of Nice Features/Examples

This section shows how nice features found in other IUE system will be imple-
mented in the IUEUI by using it’s basic objects. It also presents examples for
typical or interesting interface operations.

4.16.1 Displaying an Image

The simplest way of doing this is to hit the display button on a display window
or to type the command

[p]

and the *current object* will be displayed in the *current window™ using the
*current object display mapping* and the links to other windows and browsers
associated with the *current window™.

A different current window can be selected by clicking anywhere on a window.
The *current object* can be selected interactively from a browser. For example
the command

[browse Objects-from-session.September20]

would either create or use the *Current-Browser* on all the objects saved in a
database from a session on September20. The user would then use the command
buttons associated with the browser to select an object as the *current object™
and then type

[p]

The selected object will be displayed using a default *object display-mapping*.
If no window exists, one will automatically be created based upon the object
and system defaults.

The user can play with the *object display mapping* using keywords. For
example,

[p :CLUT clut51]




Figure 4-10: System Menu
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would display using the current defaults while the user supplies the color look-up
table to map from object values to screen values.

(p :linear 0 128 *screen-min* *screen-max*]

would display using the current defaults while the range of object values from 0
to 128 are linearly mapped onto the range of values *screen-min* and *screen-
max™* (these could be defaults).

Additionally the user could type

[create-gizmo :type slider
:name slick
:min 0 :max 256
:action
[p image :linear 0 [read slick] *screen-min* *screen-max#*]]

4.16.2 Interactive Function Application

The interactive display allows a user to access the currently displayed object
or a list of specified objects through a display window using a mouse, pointing
device or other interactive device (space ball, data glove). We begin with the
simple form of this where we assume the user has a mouse and a keyboard.
The command [This may belong as a menu-level command or a default when
clicking in the window]

(il

places the user in interactive mode with respect the *current window* and the
*current object*. Thereafter, when the user clicks in locations in the window, he
is returned the corresponding locations and and values in the displayed spatial
object. These values can be displayed in the Command Interface or in the small
text field associated with the current window. What is actually happening each
time a click occurs in the window, is that the queues for *object-positions*,
*object-values*, *window-positions*, *window-values* are being filled with the
selected values.
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(i imagel image2 image3]

will do this for all the specified images simultaneously and store lists of values
in the queues. To exit interactive mode, the user will hit some specified mouse
button or keyboard key. (INote: what about viewing objects such as closed
surfaces which may be two sided? We assume that the IUE will provide basic
operation for intersecting a ray of projection with a set of specified objects with
respect to a coordinate system. This operation could be invoked from the values
returned by the i command. In general, all the geometric operations should be
general ones to the IUE which can be invoked through the interface.)

The user can also call functions in the interactive mode to be applied to the
values in the different queues. For example:

[i image :1 [p :overlay-plane clear]
[p image :value-function ’'(if (image.value > *object-valuex[1])
red blue)]

Whenever the user hits the terminal key 1, the overlay plane will be cleared
and all image locations with a value greater than the value at the selected
image location will be displayed in red, otherwise blue, in the overlay planes.
tmage.value is a dummy variable that refers to the current value in image which
is being displayed. *object-value*[1] refers to the value selected using a mouse
click in the display window. red blue refers to globally defined overlay colors.
Recall that the :value function specifies the operation to be applied to an object
value to map it onto a screen intensity or color Note: should there be a default
for transparency operations?). Values in image are returned whenever the user
clicks the mouse.

Another example:

[p *Wix imagel]

[cw :copy-attributes *W2x]

[p *W2* image?]

[i *W1* imagel :1 [g *W2% :draw-line
*Wi.min-x*
*object location*[1].y
*W2 . max-x*
*object-location*[1].y]]
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The user displays imagel in *W1*. He then creates another window which
is identical to *W2* and interactively moves it to another screen position. He
displays image2 in this new window using the *current-object-display-mapping*.
Thereafter, when he interactively selects a point in imagel, the corresponding
epipolar line (no rotation, only translation in X) is displayed with respect to
image?2.

Let’s say the user has a label image containing a set of extracted image features
and he want to inspect these in detail.

[cw :size 512 512 :name zoomie]

> *Wik

[cw :size 128 128 :name zoomer]

> *W2x*

[create-link *Wi* *W2* :transformation-link :zoom 5§ 5 :pan 0 O]
[cb :type object :field-number 5]

[p *Wi* image]

[p curveDB :positions curveDB.locations :overlay red]

[i label-image :always [browse *object-value*]
[set-link *Wi* *W2% :pan *object-position*[1].x
*object-position*[1].y]]

Here the user creates two windows and displays the image and the extracted
database of curves in one of them. This is then displayed in *W2* under the
specified transformation. The user creates an object browser. When the user
clicks in *W1* with respect to the label plane, the curve object at that location
is return as the *object-value*. This is then browsed in the current browser
and the area surrounding this curve is displayed in *W2* to get a close up on
the curve and the underlying image.

[i image
:initial [message "select endpoints and press 1"]
:1 line-mask = [make-instance

:object line
:domain-increment 1
:interpolation nearest-neighbor
:ptl *object-position*[2]
:pt2 *object-position*[1]]

[p :overlay clear]
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[p line-mask :positions line-mask.locations :overlay-plane red]
[plotid *W2* :y-values [object-compose line-mask.positions image]]

Here the user is interactively creating a line-mask with mouse action, display-
ing the line-mask with respect to the image, and then plotting the image values
found along the line-mask in as a 1d plot. Many things in this example are oper-
ations in the IUE that are still being specified. line-mask = [make-instance
:object line creates an instance of a line object with integer indices that
are mapped onto the image coordinates between ptl and pt2 using nearest-
neighbor interpolation. Such a functionality will exist in the IUE. There is also
the issue of how we handle local variables (such as line- mask) in the IUEUI
command buffer. Once the line-mask is created, it is displayed in the overlay
plane. Finally, the composition of the positions in the line line-mask with the
image (basically composing the functions line-mask: integers —/ > 2D Image
Coordinates and image: 2D Image Coordinates — > scalar values) are plotted.

4.16.3 Displaying a set of Region Boundaries and Junctions

The user would type
[p image]

to display the image from which the features were extracted. RegionDB and
JunctionDB refer to a database of extracted regions and junctions. To display
these the user could type

[p RegionDB.locations :overlay cycle]
[p JunctionDB.locations :overlay green]

This would display the regions by cycling through the different defined overlay
colors and then displaying the junctions in the green overlay plane. There
are problems with this: adjacent regions may have the same overlay color and
green junctions may be overlaid on top of green regions. The adjacent region
problem could require a region coloring option (or the user could display the
region contours in an overlay plane). The other problem could be solved by
using compositing options such as exclusive-oring or by commands such as
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[p RegionDB.locations :overlay cycle (red,blue,yellow,pink,orange) ]
[p JunctionDB.locations :overlay green]

where the set of overlay values to cycle through is explicitly listed (and doesn’t
include green). (Note: another possibility is to animate the overlays so they
flash using double buffering animation).

RegionDB.locations reflects some general issue with how to refer to IUE objects
and their attributes during display operations. First, we are referring not to a
single object but to a set of objects that we want displayed. The display method
will have to iterate over the elements of this set applying the appropriate display
method to each. Second, regions and junctions have several attributes and we
need to be clear about exactly what we want displayed from them. Here we
are referring to the locations in image coordinates that are occupied by these
objects. Let’s say we wanted to color the regions based upon some attribute
such as the value of some associated texture measure (what will these references
look like in the IUE?). We suggest something like

[p RegionDB :positions RegionDB.locations :values
RegionDB.texture-measure
:linear 0 100 *min* *max* :red-8]

This says to display the RegionDB with the positions coming from the locations
attribute of the regions in the regionsDB and the values by taking the Region DB
texture mappings and using a linear mapping from these onto screen intensities

in 8 bits of red.

or

[p RegionDB :positions locations :values texture-measure
:linear-mapping 0 100 *min* *max* :red-8]

Where it is locations and texture-measure are defined attributes of region ob-
jects in the regionDB.
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4.16.4 Display of a Vector Field

[p image]
[v image.gradient :x-inc 5 :y-inc 5 :length-scale 5]

each component is being used to specify the components of the displayed vector.
This should be a general operation where the components are used to describe
the display of an arbitrary graphical object, such as a perspective display of a
cube to provide information about orientation

4.16.5 Window to window Zooming and Panning

Creation of windows and browsers and creating links between these is a basic
processing mode and can be performed through system menus. The user would
select create-window from the system menu and create two windows by clicking
and dragging the mouse to size the windows and would then position the win-
dows by dragging the menu-bars. He could select the [either off a menu or from
a button in the title bar of the window] the interactive window tools/inspector
to set attributes such as name, title bar color.He would then select link-windows
from the system menu. The order in which he then clicks on the windows cre-
ates a link between them. A browser of transformation between windows comes
up that he can select from. He would select zoom and pan and specify it using
a dynamic selection rectangle. Thereafter, whenever a display occurs in win-
dow *W1* the same display occurs in window *W2* with the transformation
specified by the link.

Alternatively, this could all be done through interface commands:

[cw :screen-position 100 100 :screen-size 256 256 :name "big" :bar-color red]
> *xWix

[cw :screen-position 100 300 :screen-size 256 256 :name "zoomer"]

> *xW2*

[link *Wi* *W2% :zoom 2 2 :pan 100 100]

[i :1 [set-link *Wi* *W2x :zoom {add (1 1) to current zoom value}]

:2 [set-link *Wi* *W2* :zoom {subtract (1 1) to current zoom value}]
:3 [set-link *Wi* *W2* :pan object.location[1].x object.location[1].y]]

4.16.6 Browsing a selected Image Area

The simplest way to do this would be to type
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[array-browse]

and an array browser will be set up on the *current object* at a default location
and neighborhood size (probably the center and 10) using the *current object
browse mapping* [what type of font is used, etc.] The dimension of the array
is based upon the dimension of the object. The user could use the command
buttons on the array browser to move the inspection point through the object
(1D or 2D arrow pairs plus another for selecting dimension—the default setting
would come from the browse method associated with the object to be browsed).
Or the user could type

[array-browse object]

if the user types
[array-browse objectl object2 ...]

the fields in the array browsers will display registered values from all the speci-
fied objects. If the user types

[array-browse objectl [Functionl objecti] [Function2 object1]]

the fields in the array browsers will display registered values from objectl and
the application of Functions 1 and 2 to object 1. If I have two different routines
for computing curvature along a curve and I want to inspect them, I could type

[array-browse curve [curvaturel curve] [curvature2 curve]]

An alternative is to run the array browser on mouse selected locations. This
may be a default action relative to the current window or the user may type

[i :continuous [array-browse
:location *current- object.x* *current-object.y*]]

and the browser will display values in a neighborhood surrounding the cur-
rent object position selected by the mouse. The neighborhood will be updated
continuously as the mouse is moved.

Setting up links between array browsers: the links have associated processing
actions to see the effect of a routine over a selected neighborhood.
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4.16.7 Displaying a Color Image

[p color-image :color rgb-8]

displays the color image in with 8 bits in red, green and blue.
[p imagel image2 image3 :color rgb-8]

treats the three images as specifying the rgb components

4.16.8 Multiple Image Display

[p imagel image2 :values [- imagel.val image2.val]
:linear-range -20 20 *min* *max*]

4.16.9 Interactive Inspection of Image Registered Features

This involves how spatial queries are performed in the IUE. One way involves
the use of a label image. This is essentially a depth buffer which stores a a
list of objects which occupy a given pixel (the list could be ordered by depth
or time of extraction of feature). This can be treated as an image and all the
operations that can be applied to an image can be applied to it. Such as

[p label-image :values [if (label-image.value /= NULL)
[i label-image :1 [browse label-image.value]]

4.16.10 Finding a particular result and Displaying it

The user would browse a particular database by typing

[browse long-term-data-base
rattributes (time-of-creation,function,type)]

and a browser would come up with respect to the objects in the long term data
base listed row by row with the attributes time-of-creation, function, type in
the columns. The user would click the column head type and then = and
then type in “image” and the browser would then display all the objects of
type “image”. The user would then click the column head function and the
= and then type in “Gaussian” and the browser would then display all the

images created by the Gaussian Routine. The user would then click the column
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head Time-of-creation and then Sort Max and the browser displays the selected
images ordered by their time of creation. By clicking to the side of the first
listed image, it then becomes the *current-object* and can be displayed either
by clicking the display button in the browser or by typing

(p]

Suppose the user had a database of regions and wanted to find the largest. He
would type

[browse RegionDB :attributes area ]

4.16.11 Animation of Surface Display of a moving edge

Here we are trying to understand the nature of an edge in a sequence of images.
To do this, we display the intensity in a selected image area as a surface plot and
then display, as an overlay, on top of the surface plot, the extracted edges. This
is done using a sequence of images and extracted edge-images (binary images
where 1 indicates the presence of an edge and 0 the absence) and writing the
display out to an animation file and then playing it back in a window.

To do this, the user would type:

{iterate image over image-sequence and
edge-image over edge-image-sequence

[s animation-file image !image-position 200 200
:distance 100
:Thetal 20
:Theta2 3
roverlay-object edge-image :overlay-plane red :clear t]}

[play animation-file]

Several things are occurring here. The first two lines correspond to the set iter-
ation control structures provided in the base programming language. We don'’t
want to build a complete programming language into the interface command
language so it’s not clear if this is interactive. These lines cause the variables
image and edge-image to iterate over the respective sets. The next line says
to do a surface display to an animation file. Instead of displaying in a window
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directly, the display will be written out to a file for play back. If a window
were specified instead, the display would occur in a window (although this may
not play at an effective speed for an animation). The surface displays selects
an image point location which will be viewed, viewing distance from this point
and the angles of view. It also states that any previous display actions will be
cleared (it’s a new frame) and that the edge-image is displayed in red values at
locations it occupies on top of the intensity surface.

The play command will play the animation back in the current window. There
are keywords associated with the play command for controlling the speed of the
animation. In fact, these parameters could be linked to a slider for interactive
control.

Animations can be made on the fly. A user can always specify this by indicating
an animation file instead of a display window in a display command. Another
command is

[snapshot window animation-file]

which will store whatever the state of the display in the specified window is out
to an animation file. '

4.16.12 Interactive Surface Display

Here the user specifies a location in an image in one window and in another
window, a surface plot around this location is displayed. The user would type:

[p w1 image]
[i w1 :1 [s w2 image :location image.x image.y
:distance 200
:thetal 30
:theta2
:clear t])

another possibility would be

[create-gizmo :type slider :range 0 1000 :name distance]
[create-gizmo :type slider :range 0 180 :name thetal]
[create-gizmo :type slider :range 0 180 :name theta2]
[p w1 image]

[i w1 :1 [s w2 image :location image.x image.y
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:distance slider.distance
:thetal slider.thetal
:theta2 slider.theta2
:clear t]]

another possibility would be to allow variables that could be set by expressions
in the interface.

4.16.13 Process Monitoring

This is essentially a Set/DataBase Browser on a database of task objects. To
be KBV-ish, one of the field column should be mapped onto red or green. Tasks
would change the colors in their corresponding fields based upon their status

4.16.14 Constraint Network Monitoring

This section needs to be created in coordination with the design of the IUE
constraint networks.

4.16.15 Interactive Histogram Segmentation

Clicking on (or near the axis of a plotted function) returns the x coordinate and
the y-value of the displayed object.

[plot2d *Wix histogram]
[p *W2* image]
[i *Wi* histogram :1 [min = current-value[1].x]
[max = current-value[2].x]
[p *W2* image
:value-function
[if ((image.value > min) & (image.value < max)) bluel]]

Here the user has plotted a histogram in *W1*. He then selects the range of
values by clicking on the displayed histogram. The current-object-value contains
the x and y value from the displayed histogram. These are stored in the local
values min and max (this isn’t necessary: in general how will we refer to local
variables in these expressions? Will there be a set of dummy variables). When
the user hits the key 2, the selected range of values are displayed in the blue
overlay plane.




Section 5

Summary

The IUE will be a revolutionary system covering many technologies, serving many
levels of users, and growing by distributed development over many years. The class
hierarchy framework and user interface concepts presented in this document will allow:

o Integration of the diverse concepts of IU within one environment.
. Rapid introduction of new users to the IUE.

o Organized extension of the base IUE by developers (including new users).




